Stability Assessment, Potential Collapses and Future Evolution of the West Face of the Drus (3,754 m a.s.l., Mont Blanc Massif)

  • Battista Matasci
  • Michel Jaboyedoff
  • Ludovic Ravanel
  • Philip Deline
Conference paper

Abstract

A structural analysis was performed in the field and using Terrestrial Laser Scanning point clouds. The failure mechanisms and volumes of the collapses in the last decades have been studied and calculated to be able to assess the future evolution of the stability of the west face of the Drus.

Keywords

Rockfall TLS Structural geology Failure mechanism Permafrost 

Notes

Acknowledgments

This research was supported by the Swiss National Science Foundation (SNSF, grant 200021-127132/1) and the Alpine Space PermaNET project.

References

  1. Casty C, Wanner H, Luterbacher J, Esper J, Böhm R (2005) Temperature and precipitation variability in the European Alps since 1500. Int J Climatol 25:1855–1880CrossRefGoogle Scholar
  2. Coulson JH (1971) Shear strength of flat surfaces in rock. Proceedings of 13th Symposium On Rock Mechanics, Urbana, IL, pp 77–105Google Scholar
  3. Gruber S, Haeberli W (2007) Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change. J Geophys Res 112:F02S18. doi: 10.1029/2006JF000547
  4. Jaboyedoff M, Metzger R, Oppikofer T, Couture R, Derron M-H, Locat J, Turmel D (2007) New insight techniques to analyze rock-slope relief using DEM and 3D-imaging cloud points: COLTOP-3D software. Proceedings of the 1st Canada–U.S. Rock Mechanics SymposiumGoogle Scholar
  5. Jennings JE (1972) An approach to the stability of rock slopes based on the theory of limiting equilibrium with a material exhibiting anisotropic shear strength, stability of rock slopes, proceedings of the 13th us symposium on rock mechanics (ed. ej cording), urbana, illinois, New YorkGoogle Scholar
  6. Krautblatter M, Funk D, Günzel FK (2013) Why permafrost rocks become unstable: a rock-ice-mechanical model in time and space, Earth Surf. Process Landforms 38:876–887CrossRefGoogle Scholar
  7. Leloup PH, Arnaud N, Sobel ER, Lacassin R (2005) Alpine thermal and structural evolution of the highest external crystalline massif: the Mont Blanc. Tectonics 24:TC4002. doi: 10.1029/2004TC001676
  8. Noetzli J, Gruber S, Kohl T, Salzmann N, Haeberli W (2007) Three-dimensional distribution and evolution of permafrost temperatures in idealized high-mountain topography. J G R 112:F02S13Google Scholar
  9. Ravanel L, Deline P (2008) La face ouest des Drus (massif du Mont-Blanc) : évolution de l’instabilité d’une paroi rocheuse dans la haute montagne alpine depuis la fin du petit âge glaciaire. Géomorphol Relief Processus Environ 4:261–272Google Scholar
  10. Ravanel L, Deline P (2010) Climate influence on rockfalls in high-Alpine steep rockwalls: The north side of the Aiguilles de Chamonix (Mont Blanc massif) since the end of the ‘Little Ice Age’. The HoloceneGoogle Scholar
  11. Waltham T (2009) Foundations of engineering geology, Third Edition. Spon Press, New YorkGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Battista Matasci
    • 1
  • Michel Jaboyedoff
    • 1
  • Ludovic Ravanel
    • 2
  • Philip Deline
    • 2
  1. 1.Institute of Earth Sciences (ISTE)University of LausanneLausanneSwitzerland
  2. 2.EDYTEM LabUniversity of Savoie—CNRSLe Bourget du LacFrance

Personalised recommendations