Advertisement

Writing Generation Model for Health Care Neuromuscular System Investigation

  • D. Impedovo
  • G. Pirlo
  • F. M. Mangini
  • D. Barbuzzi
  • A. Rollo
  • A. Balestrucci
  • S. ImpedovoEmail author
  • L. Sarcinella
  • C. O’Reilly
  • R. Plamondon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8452)

Abstract

In this paper the use of handwriting for health investigation is addressed. For the purpose, the paper first presents the Delta-Log and Sigma-Log models to investigate on the handwriting generation processes carried out by the neuromuscular system. Successively, a computational system for handwriting analysis is presented and some considerations are exploited about the use of the model to investigate insurgence and monitoring of some neuromuscular diseases. The experimental results show the validity of the proposed approach and highlight some directions for further research.

Keywords

Neuromuscular disease investigation Handwriting analysis Neuromuscular transfer function 

Notes

Acknowledgment

The authors thank Dr. Pietro Schino, President of Bari Alzheimer Center, for his grant in the database developing.

References

  1. 1.
    Plamondon, R., O’Reilly, C., Galbally, J., Almaksour, A., Ancquetil, É.: Recent developments in the study of rapid human movements with the kinematic theory: applications to handwriting and signature synthesis. Pattern Recogn. Lett. (2012, in press). Preprints available on-line at http://dx.doi.org/10.1016/j.patrec.2012.06.004
  2. 2.
    Plamondon, R.: A kinematic theory of rapid human movements: part I: movement representation and generation. Biol. Cybern. 72(4), 295–307 (1995)CrossRefzbMATHGoogle Scholar
  3. 3.
    Alimi, A.M., Plamondon, R.: Performance analysis of handwritten strokes generation models. In: 3-rd IWFHR, Buffalo, USA, 25–27 May 1993, pp. 272–283 (1993)Google Scholar
  4. 4.
    Plamondon, R.: Handwriting generation: the delta-lognormal theory. In: 4th International Workshop on Frontiers in Handwriting Recognition, pp. 1–10 (1994)Google Scholar
  5. 5.
    O’Reilly, C., Plamondon, R.: Automatic extraction of sigma-lognormal parameters on signatures. In: 11th International Conference on Frontiers in Handwriting Recognition (2008)Google Scholar
  6. 6.
    O’Reilly, C., Plamondon, R.: Development of a sigma-lognormal representation for on-line signatures. Pattern Recogn. (Special Issue on Frontiers in Handwriting Recognition) 42, 3324–3337 (2009)zbMATHGoogle Scholar
  7. 7.
    Plamondon, R.: Strokes against stroke-stroke for strides. In: 3-rd ICFHR, Bari, Italy, 18–20 September 2012. http://www.icfhr2012.uniba.it/ICFHR2012-Invited_I.pdf
  8. 8.
    Plamondon, R., Djioua, M.: A multi-level representation paradigm for handwriting stroke generation. Hum. Mov. Sci. 25(4–5), 586–607 (2006)CrossRefGoogle Scholar
  9. 9.
    Yanikoglu, B., Kholmatov, A.: SUSIG: an online handwritten signature database, associated protocol and benchmark results. Pattern Anal. Appl. 12, 227–236 (2009). Springer-Verlag, London, 2008MathSciNetGoogle Scholar
  10. 10.
    Brigham, E.O.: The Fast Fourier Transform. Prentice Hall, Inc., Englewood Cliffs (1974)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • D. Impedovo
    • 1
  • G. Pirlo
    • 1
  • F. M. Mangini
    • 1
  • D. Barbuzzi
    • 1
  • A. Rollo
    • 1
  • A. Balestrucci
    • 1
  • S. Impedovo
    • 1
    Email author
  • L. Sarcinella
    • 2
  • C. O’Reilly
    • 3
  • R. Plamondon
    • 3
  1. 1.Computer Science DepartmentBari UniversityBariItaly
  2. 2.Rete Puglia CentreBariItaly
  3. 3.École Polytecnique de MontréalMontrealCanada

Personalised recommendations