Advertisement

Small P Systems Defining Non-semilinear Sets

  • Artiom Alhazov
  • Rudolf Freund
Part of the Emergence, Complexity and Computation book series (ECC, volume 12)

Abstract

We present a number of tiny P systems generating or accepting nonsemilinear sets of (vectors of) natural numbers with very small numbers of rules, even for 1, 2, 3, 4, and 5 rules, depending on the particular model and the additional features used in these systems. Among the models we consider are P systems with target agreement and target selection, P systems with promoters and inhibitors, catalytic and purely catalytic P systems with normal catalysts or bi-stable catalysts. We then improve the results for catalytic (purely catalytic) P systems: 14 rules for generating a non-semilinear vector set and 29 rules for generating a non-semilinear number set are sufficient when allowing only the minimal number of two (three) catalysts; only 23 rules are needed if we allow more catalysts, i.e., five (seven) catalysts. Moreover,we introduce the new concept of toxic objects, objects that must not stay idle as otherwise the computation is abandoned without yielding a result. P systems of various kinds using toxic objects allow for smaller descriptional complexity, especially for smaller numbers of rules, as trap rules can be avoided.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alhazov, A., Freund, R.: Asynchronous and Maximally Parallel Deterministic Controlled Non-cooperative P Systems Characterize NFIN and coNFIN. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, Gy. (eds.) CMC 2012. LNCS, vol. 7762, pp. 101–111. Springer, Heidelberg (2013)Google Scholar
  2. 2.
    Alhazov, A.: P Systems without Multiplicities of Symbol-Objects. Information Processing Letters 100(3), 124–129 (2006)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Alhazov, A., Freund, R., Păun, Gh.: Computational Completeness of P Systems with Active Membranes and Two Polarizations. In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 82–92. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Alhazov, A., Freund, R., Riscos-Núñez, A.: One and Two Polarizations, Membrane Creation and Objects Complexity in P Systems. In: Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2005, pp. 385–394. IEEE Computer Society (2005)Google Scholar
  5. 5.
    Alhazov, A., Verlan, S.: Minimization Strategies for Maximally Parallel Multiset Rewriting Systems. Theoretical Computer Science 412(17), 1581–1591 (2011)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Beyreder, M., Freund, R.: Membrane Systems Using Noncooperative Rules with Unconditional Halting. In: Corne, D.W., Frisco, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2008. LNCS, vol. 5391, pp. 129–136. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Dassow, J., Păun, Gh.: Regulated Rewriting in Formal Language Theory. Springer (1989)Google Scholar
  8. 8.
    Freund, R.: Special Variants of P Systems Inducing an Infinite Hierarchy with Respect to the Number of Membranes. Bulletin of the EATCS 75, 209–219 (2001)MATHMathSciNetGoogle Scholar
  9. 9.
    Freund, R., Kari, L., Oswald, M., Sosík, P.: Computationally Universal P Systems without Priorities: Two Catalysts Are Sufficient. Theoretical Computer Science 330(2), 251–266 (2005)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Freund, R., Leporati, A., Mauri, G., Porreca, A.E., Verlan, S., Zandron, C.: Flattening in (Tissue) P systems. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Yu., Rozenberg, G., Salomaa, A. (eds.) CMC 2013. LNCS, vol. 8340, pp. 173–188. Springer, Heidelberg (2014)Google Scholar
  11. 11.
    Ibarra, O.H., Woodworth, S.: On Symport/Antiport P Systems with a Small Number of Objects. International Journal of Computer Mathematics 83(7), 613–629, 137–152 (2006)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs (1967)MATHGoogle Scholar
  13. 13.
    Păun, Gh.: Computing with Membranes. J. Comput. Syst. Sci. 61, 108–143 (2000); also see TUCS Report 208 (1998), www.tucs.fi
  14. 14.
    Păun, Gh.: Membrane Computing. An Introduction. Springer (2002)Google Scholar
  15. 15.
    Păun, Gh., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing, pp. 118–143. Oxford University Press (2010)Google Scholar
  16. 16.
    Rozenberg, G., Salomaa, A.: The Mathematical Theory of L Systems. Academic Press, New York (1980)MATHGoogle Scholar
  17. 17.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, 3 vols. Springer (1997)Google Scholar
  18. 18.
    Sburlan, D.: Further Results on P Systems with Promoters/Inhibitors. International Journal of Foundations of Computer Science 17(1), 205–221 (2006)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Sosík, P.: A Catalytic P System with Two Catalysts Generating a Non-Semilinear Set. Romanian Journal of Information Science and Technology 16(1), 3–9 (2013)Google Scholar
  20. 20.
    The P systems webpage, http://ppage.psystems.eu

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Mathematics and Computer ScienceAcademy of Sciences of MoldovaChişinăuMoldova
  2. 2.Faculty of InformaticsVienna University of TechnologyViennaAustria

Personalised recommendations