Maurice Margenstern’s Contributions to the Field of Small Universal Turing Machines

Part of the Emergence, Complexity and Computation book series (ECC, volume 12)

Abstract

On the occasion of his 65th birthday we survey some of the work of Maurice Margenstern on small universal Turing machines. Margenstern has been one of the most prolific contributors to this field, having constructed numerous small universal programs for a number of Turing machine models. These positive results are complemented by Margenstern’s negative results, or lower bounds, on universal program size. Finally, he has even explored the space in-between the known program size upper and lower bounds by giving small programs that iterate the Collatz function, which suggests that proving negative results on programs of this size will be at least as hard as resolving the Collatz problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baiocchi, C.: 3n + 1, UTM e tag-system. Tech. Rep. Pubblicazione 98/38, Dipartimento di Matematico, Università di Roma (1998) (in Italian)Google Scholar
  2. 2.
    Baiocchi, C.: Three small universal Turing machines. In: Margenstern, M., Rogozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 1–10. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Cocke, J., Minsky, M.: Universality of tag systems with P = 2. Journal of the Association for Computing Machinery (ACM) 11(1), 15–20 (1964)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Cook, M.: Universality in elementary cellular automata. Complex Systems 15(1), 1–40 (2004)MATHMathSciNetGoogle Scholar
  5. 5.
    Hermann, G.T.: The uniform halting problem for generalized one state Turing machines. In: Proceedings of the Ninth Annual Symposium on Switching and Automata Theory (FOCS), pp. 368–372. IEEE Computer Society Press, Schenectady (1968)CrossRefGoogle Scholar
  6. 6.
    Kudlek, M.: Small deterministic Turing machines. Theoretical Computer Science 168(2), 241–255 (1996)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Kudlek, M., Rogozhin, Y.: A universal Turing machine with 3 states and 9 symbols. In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp. 311–318. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Lagarias, J.C.: The 3x + 1 problem and its generalizations. American Mathematical Monthly, 3–23 (1985)Google Scholar
  9. 9.
    Lagarias, J.C.: The 3x + 1 problem: An annotated bibliography (1963–1999). Tech. Rep. arXiv:math/0309224 [math.NT] (2003)Google Scholar
  10. 10.
    Lagarias, J.C.: The 3x + 1 problem: An annotated bibliography, II (2000-2009). Tech. Rep. arXiv:math/0608208 [math.NT] (2006)Google Scholar
  11. 11.
    Margenstern, M.: Sur la frontière entre machines de Turing á arrêt décidable et machines de Turing universelles. Tech. Rep. 92.83, LITP Institut Blaise Pascal (1992)Google Scholar
  12. 12.
    Margenstern, M.: Machine de Turing universelle sur {0,1}, à trois instructions gauches. Tech. Rep. 93.36, LITP Institut Blaise Pascal (1993)Google Scholar
  13. 13.
    Margenstern, M.: Non-erasing Turing machines: A frontier between a decidable halting problem and universality. In: Ésik, Z. (ed.) FCT 1993. LNCS, vol. 710, pp. 375–385. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  14. 14.
    Margenstern, M.: Une machine de Turing universelle sur {0,1}, non-effaçante et à trois instructions gauches. Tech. Rep. 94.08, LITP Institut Blaise Pascal (1994)Google Scholar
  15. 15.
    Margenstern, M.: Non-erasing Turing machines: A new frontier between a decidable halting problem and universality. In: Baeza-Yates, R.A., Goles, E., Poblete, P.V. (eds.) LATIN 1995. LNCS, vol. 911, pp. 386–397. Springer, Heidelberg (1995)Google Scholar
  16. 16.
    Margenstern, M.: Une machine de Turing universelle non-effaçante à exactement trois instructions gauches. CRAS, Paris 320(I), 101–106 (1995)MATHMathSciNetGoogle Scholar
  17. 17.
    Margenstern, M.: Decidability and undecidability of the halting problem on Turing machines, a survey. In: Adian, S., Nerode, A. (eds.) LFCS 1997. LNCS, vol. 1234, pp. 226–236. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  18. 18.
    Margenstern, M.: The laterality problem for non-erasing Turing machines on {0,1} is completely solved. Theoretical Informatics and Applications 31(2), 159–204 (1997)MATHMathSciNetGoogle Scholar
  19. 19.
    Margenstern, M.: Frontier between decidability and undecidability: a survey. In: Margenstern, M. (ed.) Machines, Computations, and Universality (MCU), vol. 1, pp. 141–177. IUT, Metz (1998)Google Scholar
  20. 20.
    Margenstern, M.: Frontier between decidability and undecidability: a survey. Theoretical Computer Science 231(2), 217–251 (2000)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Margenstern, M.: On quasi-unilateral universal Turing machines. Theoretical Computer Science 257(1-2), 153–166 (2001)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Margenstern, M., Pavlotskaya, L.: Deux machines de Turing universelles á au plus deux instructions gauches. CRAS, Paris 320(I), 1395–1400 (1995)MATHMathSciNetGoogle Scholar
  23. 23.
    Margenstern, M., Pavlotskaya, L.: Vers une nouvelle approche de l’universalité concernant les machines de Turing. Tech. Rep. 95.58, LITP Institut Blaise Pascal (1995)Google Scholar
  24. 24.
    Margenstern, M., Pavlotskaya, L.: On the optimal number of instructions for universal Turing machines connected with a finite automaton. International Journal of Algebra and Computation 13(2), 133–202 (2003)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Michel, P.: Small Turing machines and the generalized busy beaver competition. Theoretical Computer Science 326, 45–56 (2004)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Michel, P., Margenstern, M.: Generalized 3x + 1 Functions and the Theory of Computation. In: The Ultimate Challenge: The 3x + 1 Problem, pp. 105–130. American Mathematical Society (2010)Google Scholar
  27. 27.
    Minsky, M.: Recursive unsolvability of Post’s problem of tag and other topics in theory of Turing machines. Annals of Mathematics 74(3), 437–455 (1961)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Minsky, M.: Size and structure of universal Turing machines using tag systems. In: Recursive Function Theory, Proceedings, Symposium in Pure Mathematics, vol. 5, pp. 229–238. American Mathematical Society, Provelence (1962)CrossRefGoogle Scholar
  29. 29.
    Moore, E.F.: A simplified universal Turing machine. In: ACM National Meeting, pp. 50–54. ACM Press, Toronto (1952)Google Scholar
  30. 30.
    Neary, T., Woods, D.: Small fast universal Turing machines. Theoretical Computer Science 362(1-3), 171–195 (2006)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Neary, T., Woods, D.: Four small universal Turing machines. Fundamenta Informaticae 91(1), 123–144 (2009)MATHMathSciNetGoogle Scholar
  32. 32.
    Neary, T., Woods, D.: The complexity of small universal Turing machines: a survey. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 385–405. Springer, Heidelberg (2012)Google Scholar
  33. 33.
    Pavlotskaya, L.: Solvability of the halting problem for certain classes of Turing machines. Mathematical Notes 13(6), 537–541 (1973); Translated from Matematicheskie Zametki 13(6), 899–909 (1973)Google Scholar
  34. 34.
    Pavlotskaya, L.: O minimal’nom chisle razlichnykh kodov vershin v grafe universal’noj mashiny T’juringa. Disketnyj Analiz, Sbornik Trudov Instituta Matematiki SO AN SSSR 27, 52–60 (1975); On the minimal number of distinct codes for the vertices of the graph of a universal Turing machine (in Russian)Google Scholar
  35. 35.
    Pavlotskaya, L.: Dostatochnye uslovija razreshimosti problemy ostanovki dlja mashin T’juring. Problemi Kibernetiki 27, 91–118 (1978); Sufficient conditions for the halting problem decidability of Turing machines (in Russian)Google Scholar
  36. 36.
    Post, E.: Formal reductions of the general combinatorial decision problem. American Journal of Mathmatics 65(2), 197–215 (1943)CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Robinson, R.: Minsky’s small universal Turing machine. International Journal of Mathematics 2(5), 551–562 (1991)CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Rogozhin, Y.: Small universal Turing machines. Theoretical Computer Science 168(2), 215–240 (1996)CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Wang, H.: A variant to Turing’s theory of computing machines. Journal of the Association for Computing Machinery (ACM) 4(1), 63–92 (1957)CrossRefGoogle Scholar
  40. 40.
    Woods, D., Neary, T.: On the time complexity of 2-tag systems and small universal Turing machines. In: 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 439–448. IEEE, Berkeley (2006)Google Scholar
  41. 41.
    Zykin, G.P.: Remarks about a theorem of Hao Wang. Algebra i Logika 2, 33–35 (1963) (in Russian)MATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute for NeuroinformaticsUniversity of Zürich and ETH ZürichZürichSwitzerland
  2. 2.California Institute of TechnologyPasadenaUSA

Personalised recommendations