Advertisement

Computational Models Based on Splicing

  • Yurii Rogozhin
  • Sergey Verlan
Part of the Emergence, Complexity and Computation book series (ECC, volume 12)

Abstract

In this paper we overview twelve different computational models that use the splicing operation.We explain the methods used for the organization of the computational process in this area and give examples for each considered model.

Keywords

Regular Language Communication Graph Membrane Computing Formal Language Theory Splice System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alhazov, A., Kogler, M., Margenstern, M., Rogozhin, Y., Verlan, S.: Small universal TVDH and test tube systems. International Journal of Foundations of Computer Science 22(1), 143–154 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Alhazov, A., Rogozhin, Y., Verlan, S.: On small universal splicing systems. International Journal of Foundations of Computer Science 23(07), 1423–1438 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bonizzoni, P., Jonoska, N.: Regular splicing languages must have a constant. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 82–92. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Csuhaj-Varjú, E., Kari, L., Păun, G.: Test tube distributed systems based on splicing. Computers and AI 15(2-3), 211–232 (1996)zbMATHGoogle Scholar
  5. 5.
    Csuhaj-Varjú, E., Verlan, S.: On length-separating test tube systems. Natural Computing 7(2), 167–181 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Freund, R., Freund, F.: Test tube systems: When two tubes are enough. In: Rozenberg, G., Thomas, W. (eds.) Developments in Language Theory, pp. 338–350. World Scientific (1999)Google Scholar
  7. 7.
    Frisco, P., Zandron, C.: On variants of communicating distributed H systems. Fundamenta Informaticae 48(1), 9–20 (2001)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Head, T.: Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors. Bulletin of Mathematical Biology 49(6), 737–759 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Head, T.: Splicing languages generated with one sided context. In: Computing with Bio-Molecules. Theory and Experiments, pp. 158–181 (1998)Google Scholar
  10. 10.
    Kari, L.: DNA computing: Arrival of biological mathematics. The Mathematical Intelligencer 19(2), 9–22 (1997); Earlier version under the title DNA computers, tomorrow’s reality. Bulletin of the European Association for Theoretical Computer Science (59), 256–266 (1996), http://www.csd.uwo.ca/lila/amsn.ps
  11. 11.
    Kari, L., Kopecki, S.: Deciding whether a regular language is generated by a splicing system. In: Stefanovic, D., Turberfield, A. (eds.) DNA 2012. LNCS, vol. 7433, pp. 98–109. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Loos, R., Manea, F., Mitrana, V.: On small, reduced, and fast universal accepting networks of splicing processors. Theoretical Computer Science 410(4-5), 406–416 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Manea, F., Martín-Vide, C., Mitrana, V.: Accepting networks of splicing processors: Complexity results. Theoretical Computer Science 371(1-2), 72–82 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Margenstern, M., Rogozhin, Y.: Time-varying distributed H systems of degree 2 generate all RE languages. In: MFCS 1998 Workshop on Frontiers of Universality (1998)Google Scholar
  15. 15.
    Margenstern, M., Rogozhin, Y.: A universal time-varying distributed H system of degree 2. Biosystems 52, 73–80 (1999)CrossRefGoogle Scholar
  16. 16.
    Margenstern, M., Rogozhin, Y.: Time-varying distributed H systems of degree 1 generate all recursively enumerable languages. In: Ito, M., Păun, G., Yu, S. (eds.) Words, Semigroups, and Transductions, pp. 329–339. World Scientific (2001)Google Scholar
  17. 17.
    Margenstern, M., Rogozhin, Y., Verlan, S.: Time-varying distributed H systems with parallel computations: the problem is solved. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 48–53. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Margenstern, M., Rogozhin, Y., Verlan, S.: Time-varying distributed H systems: An overview. Fundamenta Informaticae 64(1-4), 291–306 (2005)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Priese, L., Rogozhin, Y., Margenstern, M.: Finite H-systems with 3 test tubes are not predictable. In: Altman, R., Dunker, A., Hunter, L., Klein, T. (eds.) Proceedings of Pacific Symposium on Biocomputing, 3, Kapalua, Maui, pp. 547–558. World Scientific, Hawaii (1998)Google Scholar
  20. 20.
    Păun, G.: Computing with membranes. Journal of Computer and System Sciences 1(61), 108–143 (2000); Also TUCS Report No. 208 (1998)Google Scholar
  21. 21.
    Păun, G.: Membrane Computing. An Introduction. Springer(2002)Google Scholar
  22. 22.
    Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing Paradigms. Springer (1998)Google Scholar
  23. 23.
    Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook Of Membrane Computing. Oxford University Press (2009)Google Scholar
  24. 24.
    Verlan, S.: About splicing P systems with immediate communication and non-extended splicing P systems. In: Martín-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2003. LNCS, vol. 2933, pp. 369–382. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    Verlan, S.: Communicating distributed H systems with alternating filters. In: Jonoska, N., Păun, G., Rozenberg, G. (eds.) Aspects of Molecular Computing. LNCS, vol. 2950, pp. 367–384. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. 26.
    Verlan, S.: Head systems and applications to bioinformatics. Ph.D. thesis, University of Metz (2004)Google Scholar
  27. 27.
    Verlan, S.: A boundary result on enhanced time-varying distributed H systems with parallel computations. Theoretical Computer Science 344(2-3), 226–242 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Verlan, S., Margenstern, M.: About splicing P systems with one membrane. Fundamenta Informaticae 65(3), 279–290 (2005)zbMATHMathSciNetGoogle Scholar
  29. 29.
    Verlan, S., Margenstern, M.: Universality of splicing test tube systems with two tubes. Fundam. Inform. 110(1-4), 329–342 (2011)zbMATHMathSciNetGoogle Scholar
  30. 30.
    Verlan, S., Zizza, R.: 1-splicing vs. 2-splicing: Separating results. In: Harju, T., Karhumäki, J. (eds.) Proceedings of WORDS 2003, 4th International Conference on Combinatorics on Words, Turku, Finland, September 10-13, pp. 320–331. TUCS General Publication No. 27 (2003)Google Scholar
  31. 31.
    Zandron, C.: A model for molecular computing: Membrane systems. Ph.D. thesis, Dipartimento di Scienze dell’Informazione, Universita’ degli Studi di Milano, Milano, Italy (2002)Google Scholar
  32. 32.
    Zizza, R.: Splicing systems. Scholarpedia 5(7), 9397 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Mathematics and Computer ScienceAcademy of Sciences of MoldovaChişinăuMoldova
  2. 2.LACL, Département InformatiqueUniversité Paris EstCréteilFrance

Personalised recommendations