Skip to main content

Modeling Protein Misfolding in Charcot–Marie–Tooth Disease

  • Conference paper
  • First Online:
Book cover GeNeDis 2014

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 820))

Abstract

Charcot–Marie–Tooth (CMT) disease is the most common inherited neuromuscular disorder. Recent advancements in molecular biology have elucidated the molecular bases of this genetically heterogeneous neuropathy. Still, the major challenge lies in determining the individual contributions by malfunctions of proteins to the disease’s pathology. This paper reviews the identified molecular mechanisms underlying major forms of CMT disease. A growing body of evidence has highlighted the role of protein misfolding in demyelinating peripheral neuropathies and neurodegenerative diseases. Several hypotheses have been proposed to explain how misfolded aggregates induce neuronal damage. Current research focuses on developing novel therapeutic targets which aim to prevent, or even reverse the formation of protein aggregation. Interestingly, the role of the cellular defence mechanisms against accumulation of misfolded proteins may play a key role leading to novel strategies for treatment accelerating the clearance of their toxic early aggregates. Based on these findings we propose a model for describing in terms of a formal computer language, the biomolecular processes involving proteins associated with CMT disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexiou AT, Psiha MM, Rekkas JA, Vlamos PM (2011) A stochastic approach of mitochondrial dynamics. World Acad Sci Eng Technol 79:77–81

    Google Scholar 

  2. Alexiou AT, Psiha MM, Vlamos PM (2011) A stochastic model for protein synthesis and activation through RNA-protein interaction in bioambients calculus. Comput Technol Appl 2:565–569

    Google Scholar 

  3. Barisic N, Claeys K, Sirotkovic-Skerlev M, Lfgren A, Nelis A, De Jonghe PEA (2008) Charcot–Marie–Tooth disease: a clinico-genetic confrontation. Ann Hum Genet 72(Pt 3):41641

    Google Scholar 

  4. Berciano A, Garca E, Gallardo C, Ramn, Combarros O (2009) Phenotype and clinical evolution of Charcot–Marie–Tooth disease type 1A duplication. Adv Exp Med Biol 652:183200

    Google Scholar 

  5. Berger P, Young P, Suter U (2002) Molecular cell biology of Charcot–Marie–Tooth disease. Neurogenetics 4(1):1–15

    Article  CAS  PubMed  Google Scholar 

  6. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2(6):326–332

    Article  CAS  PubMed  Google Scholar 

  7. Cao SS, Kaufman RJ (2012) Unfolded protein response. Curr Biol 22(16):R622–R626

    Article  CAS  PubMed  Google Scholar 

  8. Chen A, Muzzio IA, Malleret G, Bartsch D, Verbitsky M, Pavlidis P, Yonan AL, Vronskaya S, Grody MB, Cepeda I et al (2003) Inducible enhancement of memory storage and synaptic plasticity in transgenic mice expressing an inhibitor of atf4 (creb-2) and c/ebp proteins. Neuron 39(4):655–669

    Article  CAS  PubMed  Google Scholar 

  9. Chin L, Olzmann J, Li L (2008) Aggresome formation and neurodegenerative diseases: therapeutic implications. Curr Med Chem 15(1):47–60 (2008)

    Article  PubMed  Google Scholar 

  10. Chin LS, Lee SM, Li L (2013) Simple: a new regulator of endosomal trafficking and signaling in health and disease. Commun Integr Biol 6(3), 799–816 (2013)

    Article  Google Scholar 

  11. Dyck PJ, Lambert EH (1968) Lower motor and primary sensory neuron diseases with peroneal muscular atrophy: I. neurologic, genetic, and electrophysiologic findings in hereditary polyneuropathies. Arch Neurol 18(6):603

    Google Scholar 

  12. Eylar EH, Uyemura K, Brostoff SW et al (1979) Proposed nomenclature for pns myelin proteins. Neurochem Res 4(2):289–293

    Article  CAS  PubMed  Google Scholar 

  13. Fontana W, Buss LW (1996) The barrier of objects: from dynamical systems to bounded organizations. Citeseer

    Google Scholar 

  14. Fortun WA, Dunn Jr S, Joy JL, Notterpek L (2003) Emerging role for autophagy in the removal of aggresomes in Schwann cells. J Neurosci 23(33):10672–10680

    CAS  PubMed  Google Scholar 

  15. Fortun J, Go JC, Li J, Amici SA, Dunn Jr WA, Notterpek L (2006) Alterations in degradative pathways and protein aggregation in a neuropathy model based on PMP22 overexpression. Neurobiol Dis 22(1):153–164

    Article  CAS  PubMed  Google Scholar 

  16. Greenfield S, Brostoff S, Eylar EH, Morell P (1973) Protein composition of myelin of the peripheral nervous system. J Neurochem 20(4):1207–1216

    Article  CAS  PubMed  Google Scholar 

  17. Haze K, Yoshida H, Yanagi H, Yura T, Mori K (1999) Mammalian transcription factor atf6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10(11):3787–3799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Jessen KR, Mirsky R (2008) Negative regulation of myelination: relevance for development, injury, and demyelinating disease. Glia 56(14):1552–1565

    Article  PubMed  Google Scholar 

  19. Juárez P, Palau F (2012) Neural and molecular features on Charcot–Marie–Tooth disease plasticity and therapy. Neural Plast 2012. Article ID 171636, 11 pages, 2012. doi:10.1155/2012/171636

  20. Kamholz J, Awatramani R, Menichella D, Jiang H, Xu W, Shy M (1999) Regulation of myelin-specific gene expression: relevance to CMT1. Ann N Y Acad Sci 883(1):91–108

    Article  CAS  PubMed  Google Scholar 

  21. Krajewski K, Lewis R., Fuerst D et al (2000) Neurological dysfunction and axonal degeneration in Charcot–Marie–Tooth disease type 1a. Brain 44:1299–1304

    Google Scholar 

  22. Lee YC, Lin KP, Chang MH, Liao YC, Tsai CP, Liao KK, Soong BW (2010) Cellular characterization of mpz mutations presenting with diverse clinical phenotypes. J Neurol 257(10):1661–1668

    Article  CAS  PubMed  Google Scholar 

  23. Lee SM, Olzmann JA, Chin LS, Li L (2011) Mutations associated with Charcot–Marie–Tooth disease cause SIMPLE protein mislocalization and degradation by the proteasome and aggresome–autophagy pathways. J Cell Sci 124(19):3319–3331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Lee SM, Chin LS, Li L (2012) Protein misfolding and clearance in demyelinating peripheral neuropathies: therapeutic implications. Commun Integr Biol 5(1):107–110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Matsumoto H, Miyazaki S, Matsuyama S, Takeda M, Kawano M, Nakagawa H, Nishimura K, Matsuo S (2013) Selection of autophagy or apoptosis in cells exposed to ER-stress depends on ATF4 expression pattern with or without chop expression. Biol Open 2(10):1084–1090

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Milner R (1999) Communicating and mobile systems: the pi calculus. Cambridge University Press, Cambridge

    Google Scholar 

  27. Nishitoh H, Saitoh M, Mochida Y, Takeda K, Nakano H, Rothe M, Miyazono K, Ichijo H (1998) Ask1 is essential for JNK/SAPK activation by TRAF2. Mol Cell 2(3):389–395

    Article  CAS  PubMed  Google Scholar 

  28. Pareek S, Notterpek L, Snipes GJ, Naef R, Sossin W, Laliberté J, Iacampo S, Suter U, Shooter EM, Murphy RA (1997) Neurons promote the translocation of peripheral myelin protein 22 into myelin. J Neurosci 17(20):7754–7762

    CAS  PubMed  Google Scholar 

  29. Pareyson D, Marchesi C (2009) Diagnosis, natural history, and management of Charcot–Marie–Tooth disease. Lancet Neurol 8(7):654–667

    Article  CAS  PubMed  Google Scholar 

  30. Patzkó Á, Bai Y, Saporta MA, Katona I, Wu X, Vizzuso D, Feltri ML, Wang S, Dillon LM, Kamholz J et al (2012) Curcumin derivatives promote Schwann cell differentiation and improve neuropathy in R98C CMT1B mice. Brain 135(12):3551–3566

    Article  PubMed Central  PubMed  Google Scholar 

  31. Pennuto M, Tinelli E, Malaguti M, Del Carro U, D’Antonio M, Ron D, Quattrini A, Feltri ML, Wrabetz L (2008) Ablation of the UPR-mediator CHOP restores motor function and reduces demyelination in Charcot–Marie–Tooth 1b mice. Neuron 57(3):393–405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Pennuto M, Tinelli E, Malaguti M et al (2008) Ablation of the UPR-mediator CHOP restores motor function and reduces demyelination in Charcot–Marie–Tooth 1b mice. Neuron 57(3):393–405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Rajesh K, Papadakis AI, Kazimierczak U, Peidis P, Wang S, Ferbeyre G, Kaufman RJ, Koromilas AE (2013) eIF2α phosphorylation bypasses premature senescence caused by oxidative stress and pro-oxidant antitumor therapies. Aging 5(12):884

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Regev A, Shapiro E (2004) The π-calculus as an abstraction for biomolecular systems. In: Modelling in molecular biology. Springer, Berlin, pp 219–266

    Google Scholar 

  35. Regev A, Silverman W, Shapiro E (2001) Representation and simulation of biochemical processes using the pi-calculus process algebra. Pac Symp Biocomput 6:459–470

    Google Scholar 

  36. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–529

    Article  CAS  PubMed  Google Scholar 

  37. Rutkowski DT, Kaufman RJ (2004) A trip to the ER: coping with stress. Trends Cell Biol 14(1):20–28

    Article  CAS  PubMed  Google Scholar 

  38. Ryan MC, Shooter EM, Notterpek L (2002) Aggresome formation in neuropathy models based on peripheral myelin protein 22 mutations. J Peripher Nervous System 7(4):246–246 (2002)

    Article  Google Scholar 

  39. Samali A, FitzGerald U, Deegan S, Gupta S (2010) Methods for monitoring endoplasmic reticulum stress and the unfolded protein response. Int J Cell Biol p 830307

    Google Scholar 

  40. Saporta MA, Shy BR, Patzko A, Bai Y, Pennuto M, Ferri C, Tinelli E, Saveri P, Kirschner D, Crowther M et al (2012) Mpzr98c arrests Schwann cell development in a mouse model of early-onset Charcot–Marie–Tooth disease type 1b. Brain 135(7):2032–2047

    Article  PubMed Central  PubMed  Google Scholar 

  41. Shen J, Chen X, Hendershot L, Prywes R (2002) Er stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 3(1):99–111

    Article  CAS  PubMed  Google Scholar 

  42. Teske BF, Wek SA, Bunpo P, Cundiff JK, McClintick JN, Anthony TG, Wek RC (2011) The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress. Mol Biol Cell 22(22):4390–4405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287(5453):664–666

    Article  CAS  PubMed  Google Scholar 

  44. Verfaillie T, Salazar M, Velasco G, Agostinis P (2010) Linking ER stress to autophagy: potential implications for cancer therapy. Int J Cell Biol 2010, Article ID 930509, 19 pages, 2010. doi:10.1155/2010/930509

  45. Wang S, Kaufman RJ (2012) The impact of the unfolded protein response on human disease. J Cell Biol 197(7):857–867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Yoshida H, Matsui T, Hosokawa N, Kaufman RJ, Nagata K, Mori K (2003) A time-dependent phase shift in the mammalian unfolded protein response. Dev Cell 4(2):265–271

    Article  CAS  PubMed  Google Scholar 

  47. Züchner S, Vance JM (2006) Molecular genetics of autosomal-dominant axonal Charcot–Marie–Tooth disease. Neuromol Med 8(1–2):63–74

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgia Theocharopoulou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Theocharopoulou, G., Vlamos, P. (2015). Modeling Protein Misfolding in Charcot–Marie–Tooth Disease. In: Vlamos, P., Alexiou, A. (eds) GeNeDis 2014. Advances in Experimental Medicine and Biology, vol 820. Springer, Cham. https://doi.org/10.1007/978-3-319-09012-2_7

Download citation

Publish with us

Policies and ethics