Advertisement

The Spherical Harmonics Expansion Method for Assessing Hot Carrier Degradation

  • Markus Bina
  • Karl Rupp
Chapter

Abstract

An overview of recent developments for solving the Boltzmann transport equation for semiconductors in a deterministic manner using spherical harmonics expansions is given. The method is an attractive alternative to the Monte Carlo method, since it does not suffer from inherent stochastic limitations such as the difficulty of resolving small currents, excessive execution times, or the inability to deal with rare events such as tunneling or low-frequency noise. In particular, the method allows for a resolution of the high-energy tail of the distribution function free from stochastic noise, which makes it very attractive for hot carrier degradation. We review recent improvements to the method and compare results obtained for a 250 nm and a 25 nm MOSFET, demonstrating the importance of electron-electron scattering in scaled-down devices.

Keywords

Capture Cross Section Impurity Scattering Spherical Harmonic Expansion Boltzmann Transport Equation Free Flight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors wish to thank P. Palestri and A. Zaka for providing Monte Carlo data for carrier-carrier scattering. Support by the Austrian Science Fund (FWF), grant P23598, is gratefully acknowledged.

References

  1. 1.
    S.E. Rauch, F. Guarin, The energy driven hot carrier model, in Hot Carrier Degradation in Semiconductor Devices, ed. by T. Grasser. (Springer, Cham, 2014)Google Scholar
  2. 2.
    S. Tyaginov, Physics-based modeling of hot-carrier degradation, in Hot Carrier Degradation in Semiconductor Devices, ed. by T. Grasser. (Springer, Cham, 2014)Google Scholar
  3. 3.
    S. Tyaginov, I. Starkov, C. Jungemann, H. Enichlmair, J. Park, T. Grasser, in Proceedings of ESSDERC, pp. 151–154 (2011)Google Scholar
  4. 4.
    S. Tyaginov, I. Starkov, O. Triebl, J. Cervenka, C. Jungemann, S. Carniello, J. Park, H. Enichlmair, M. Karner, C. Kernstock, E. Seebacher, R. Minixhofer, H. Ceric, T. Grasser, in Proceedings of IPFA, pp. 1–5 (2010)Google Scholar
  5. 5.
    M. Bina, K. Rupp, S. Tyaginov, O. Triebl, T. Grasser, in IEEE International Electron Devices Meeting (IEDM), pp. 30.5.1–30.5.4 (2012)Google Scholar
  6. 6.
    W. McMahon, A. Haggag, K. Hess, IEEE Trans. Nanotechnol. 2(1), 33 (2003)CrossRefGoogle Scholar
  7. 7.
    A. Zaka, P. Palestri, Q. Rafhay, R. Clerc, D. Rideau, L. Selmi, Semi-analytic modeling for hot carriers in electron devices, in Hot Carrier Degradation in Semiconductor Devices, ed. by T. Grasser. (Springer, Cham, 2014)Google Scholar
  8. 8.
    S. Reggiani, G. Barone, E. Gnani, A. Gnudi, G. Baccarani, S. Poli, R. Wise, M.Y. Chuang, W. Tian, S. Pendharkar, M. Denison, Characterization and modeling of high-voltage LDMOS transistors, in Hot Carrier Degradation in Semiconductor Devices, ed. by T. Grasser. (Springer, Cham, 2014)Google Scholar
  9. 9.
    S.M. Hong, C. Jungemann, J. Comput. Electron. 8, 225 (2009)CrossRefGoogle Scholar
  10. 10.
    C. Jungemann, B. Meinerzhagen, Hierarchical Device Simulation. Computational Microelectronics (Springer, Wien, 2003)CrossRefzbMATHGoogle Scholar
  11. 11.
    B. Meinerzhagen, A. Pham, S.M. Hong, C. Jungemann, in International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 293–296 (2010)Google Scholar
  12. 12.
    A. Bravaix, C. Guerin, V. Huard, D. Roy, J. Roux, E. Vincent, in IEEE International Reliability Physics Symposium, pp. 531–548 (2009)Google Scholar
  13. 13.
    C. Guerin, V. Huard, A. Bravaix, J. Appl. Phys. 105(11), 114513 (2009)CrossRefGoogle Scholar
  14. 14.
    A. Bravaix, V. Huard, F. Cacho, X. Federspiel, D. Roy, Hot-carrier degradation in decananometer CMOS nodes: from an energy driven to a unified current degradation modeling by multiple carrier degradation process, in Hot Carrier Degradation in Semiconductor Devices, ed. by T. Grasser. (Springer, Cham, 2014)Google Scholar
  15. 15.
    N. Goldsman, C. Lin, Z. Han, C. Huang, Superlattices Microstruct. 27, 159 (2000)CrossRefGoogle Scholar
  16. 16.
    S. Hong, A. Pham, C. Jungemann, Deterministic Solvers for the Boltzmann Transport Equation (Springer, Wien, 2011)CrossRefzbMATHGoogle Scholar
  17. 17.
    C. Herring, E. Vogt, Phys. Rev. 101(3), 944 (1956)CrossRefzbMATHGoogle Scholar
  18. 18.
    C. Jungemann, A.T. Pham, B. Meinerzhagen, C. Ringhofer, M. Bollhöfer, J. Appl. Phys. 100(2), 024502 (2006)CrossRefGoogle Scholar
  19. 19.
    H. Kosina, M. Harrer, P. Vogl, S. Selberherr, in Proceedings of SISDEP, pp. 396–399 (1995)Google Scholar
  20. 20.
    S.M. Hong, C. Jungemann, in Proceedings of ESSDERC, pp. 170–173 (2008)Google Scholar
  21. 21.
    D. Schroeder, D. Ventura, A. Gnudi, G. Baccarani, Electron. Lett. 28(11), 995 (1992)CrossRefGoogle Scholar
  22. 22.
    K. Rahmat, J. White, D.A. Antoniadis, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 15(10), 1181 (1996)CrossRefGoogle Scholar
  23. 23.
    C. Ringhofer, Trans. Theory Stat. Phys. 31, 431 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    A. Gnudi, D. Ventura, G. Baccarani, F. Odeh, Solid State Electron. 36(4), 575 (1993)CrossRefGoogle Scholar
  25. 25.
    R. Brunetti, C. Jacoboni, F. Nava, L. Reggiani, G. Bosman, R. Zijlstra, J. Appl. Phys. 52(11), 6713 (1981)CrossRefGoogle Scholar
  26. 26.
    C. Jacoboni, P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation (Springer, Wien, 1989)CrossRefGoogle Scholar
  27. 27.
    R. Brunetti, Solid State Electron. 32, 1663 (1989)CrossRefGoogle Scholar
  28. 28.
    A.T. Pham, C. Jungemann, B. Meinerzhagen, in Proceedings of SISPAD, pp. 361–364 (2006)Google Scholar
  29. 29.
    G. Matz, S.M. Hong, C. Jungemann, in Proceedings of SISPAD, pp. 167–170 (2010)Google Scholar
  30. 30.
    M.C. Vecchi, D. Ventura, A. Gnudi, G. Baccarani, in Proceedings of NUPAD, pp. 55–58 (1994)Google Scholar
  31. 31.
    J. Seonghoon, S. Hong, C. Jungemann, IEEE Trans. Electron Devices 58(5), 1287 (2011)CrossRefGoogle Scholar
  32. 32.
    S.M. Hong, C. Jungemann, in Proceedings of SISPAD, pp. 135–138 (2010)Google Scholar
  33. 33.
    S. Rauch, F. Guarin, G. La Rosa, IEEE Electron Devices Lett. 19(12), 463 (1998)CrossRefGoogle Scholar
  34. 34.
    S. Rauch, G. La Rosa, F. Guarin, IEEE Trans Devices Mater. Reliab. 1(2), 113 (2001)CrossRefGoogle Scholar
  35. 35.
    A. Zaka, P. Palestri, Q. Rafhay, R. Clerc, M. Iellina, D. Rideau, C. Tavernier, G. Pananakakis, H. Jaouen, L. Selmi, IEEE Trans. Electron Devices 59(4), 983 (2012)CrossRefGoogle Scholar
  36. 36.
    S. Tyaginov, M. Bina, F. Jacopo, D. Osintsev, Y. Wimmer, B. Kaczer, T. Grasser, in IEEE International Integrated Reliability Workshop Final Report (2013)Google Scholar
  37. 37.
    A. Ventura, D. Gnudi,, G. Baccarani, in Proceedings of SISDEP, pp. 161–164 (1993)Google Scholar
  38. 38.
    D. Ventura, A. Gnudi, G. Baccarani, F. Odeh, Appl. Math. Lett. 5(3), 85 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    K. Rupp, P.W. Lagger, T. Grasser, A. Jungel, in Proceedings of IWCE, pp. 1–4 (2012)Google Scholar
  40. 40.
    H. Lin, N. Goldsman, I.D. Mayergoyz, in Proceedings of IWCE, pp. 143–146 (1992)Google Scholar
  41. 41.
    T. Grasser, Microelectron. Reliab. 52(1), 39 (2012)CrossRefGoogle Scholar
  42. 42.
    O. Madelung, Introduction to Solid-State Theory. Springer Series in Solid-State Sciences (Springer, New York, 1996)Google Scholar
  43. 43.
    A. Piazza, C. Korman, A. Jaradeh, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 18(12), 1730 (1999)CrossRefGoogle Scholar
  44. 44.
    W. Shockley, W.T. Read, Phys. Rev. 87, 835 (1952)CrossRefzbMATHGoogle Scholar
  45. 45.
    K. Rupp, C. Jungemann, M. Bina, A. Jüngel, T. Grasser, in Proceedings of SISPAD, pp. 19–22 (2012)Google Scholar
  46. 46.
    K. Rupp, T. Grasser, A. Jüngel, in IEDM Technical Digest (2011)Google Scholar
  47. 47.
    K. Rupp, T. Grasser, A. Jüngel, in Proceedings of SISPAD, pp. 151–155 (2011)Google Scholar
  48. 48.
    W. McMahon, A. Haggaag, K. Hess, IEEE Trans. Nanotechnol. 2(1), 33 (2003)CrossRefGoogle Scholar
  49. 49.
    S. Tyaginov, I. Starkov, H. Enichlmair, J. Park, C. Jungemann, T. Grasser, ECS Trans. 35(4), 321–352 (2011). Online: http://ecst.ecsdl.org/content/35/4/321.abstract
  50. 50.
    A. Bravaix, V. Huard, in European Symposium on the Reliability of Electron Devices (2010)Google Scholar
  51. 51.
    S. Tyaginov, I. Starkov, O. Triebl, H. Enichlmair, C. Jungemann, J. Park, H. Ceric, T. Grasser, in Proceedings of SISPAD, pp. 123–126 (2011)Google Scholar
  52. 52.
    Synopsys Inc. Online: http://www.synopsys.com/
  53. 53.
    Global TCAD Solutions. Online: http://www.globaltcad.com/
  54. 54.
    ViennaSHE Device Simulator. Online: http://viennashe.sourceforge.net/
  55. 55.
    ViennaSHE Developer Repositories. Online: http://github.com/viennashe/

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute for MicroelectronicsTU WienWienAustria

Personalised recommendations