Advertisement

Physics-Based Modeling of Hot-Carrier Degradation

  • Stanislav TyaginovEmail author
Chapter

Abstract

We present and verify a physics-based model of hot-carrier degradation (HCD). This model is based on a thorough solution of the Boltzmann transport equation. Such a solution can be achieved using either a stochastic solver based on the Monte Carlo approach or a deterministic counterpart that is based on representation of the carrier energy distribution function as a series of spherical harmonics. We discuss and check two implementations of our model based on these methods. The model is verified vs. the HCD experimental data measured in long-channel transistors as well as in ultra-scaled MOSFETs. Because both stochastic and deterministic methods have advantages and shortcomings, we study the limits of applicability of these methods. We aim to cover and link all main features of HCD, namely, the interplay between hot and colder carriers, which leads to two competing mechanisms of bond breakage and the strong localization of hot-carrier damage. Our model is linked and compared with other approaches to HCD simulations. Special attention is paid to the importance of the particular model ingredients, such as competing mechanisms of the Si–H bond dissociation, electron–electron scattering, variations in the bond-breakage energy, as well as its reduction due to the interaction between the dipole moment of the bond and the electric field. We also analyze the role of electron–electron scattering in HCD measured in devices with different gate lengths.

Keywords

Boltzmann Transport Equation Interface State Density Drift Diffusion Cold Carrier Hess Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E.H. Nicollian, C.N. Berglund, P.F. Schmidt, J.M. Andrews, Electrochemical charging of thermal SiO2 films by injected electron currents. J. Appl. Phys. 42(12), 5654–5664 (1971)CrossRefGoogle Scholar
  2. 2.
    T.H. Ning, P.W. Cook, R.H. Dennard, C.M. Osburn, S.E. Schuster, H.N. Yu, 1 μm most VLSI technology – Part IV: Hot-electron design constraints. IEEE Trans. Electron Dev. 26, 346–353 (1979)CrossRefGoogle Scholar
  3. 3.
    C. Hu, Lucky electron model for channel hot electron emission, in Proceedings of the International Electron Devices Meeting (IEDM), 1979, pp. 22–25Google Scholar
  4. 4.
    T. Mizuno, A. Toriumi, M. Iwase, M. Takanashi, H. Niiyama, M. Fukmoto, M. Yoshimi, Hot-carrier effects in 0. 1 μm gate length CMOS devices, in Proceedings of the International Electron Devices Meeting (IEDM), 1992, pp. 695–698Google Scholar
  5. 5.
    A. Bravaix, C. Guerin, V. Huard, D. Roy, J. Roux, E. Vincent, Hot-carrier acceleration factors for low power management in DC-AC stressed 40nm NMOS node at high temperature, in Proceedings of the International Reliability Physics Symposium (IRPS), 2009, pp. 531–546Google Scholar
  6. 6.
    B. Tuttle, C.G. Van de Walle, Structure, energetics, and vibrational properties of Si–H bond dissociation in silicon. Phys. Rev. B 59(20), 12884–12889 (1999)CrossRefGoogle Scholar
  7. 7.
    W. McMahon, K. Matsuda, J. Lee, K. Hess, J. Lyding, The effects of a multiple carrier model of interface states generation of lifetime extraction for MOSFETs, in Proceedings of the International Conference on Modelling and Simulation Micro, vol. 1, 2002, pp. 576–579Google Scholar
  8. 8.
    S. Tyaginov, I. Starkov, H. Enichlmair, J.M. Park, C. Jungemann, T. Grasser, Physics-based hot-carrier degradation models (invited). ECS Trans. 35(4), 321–352 (2011)CrossRefGoogle Scholar
  9. 9.
    P.A. Childs, C.C. Leung, New mechanism of hot carrier generation in very short channel MOSFETs. Electron. Lett. 31(2), 139–141 (1995)CrossRefGoogle Scholar
  10. 10.
    S.E. Rauch, G. La Rosa, F.J. Guarin, Role of E-E scattering in the enhancement of channel hot carrier degradation of deep-submicron NMOSFETs at high V _gs conditions. IEEE Trans. Device Mater. Reliab. 1(2), 113–119 (2001)CrossRefGoogle Scholar
  11. 11.
    J.D. Bude, Gate-current by impact ionization feedback in submicron MOSFET technologies, in Proceedings of the VLSI Symposium on Technical Digest, 1995, pp. 101–102Google Scholar
  12. 12.
    F. Venturi, E. Sangiorgi, B. Ricco, The impact of voltage scaling on electron heating and device performance of submicrometer MOSFET’s. IEEE Trans. Electron Devices 38(8), 1895–1904 (1991)CrossRefGoogle Scholar
  13. 13.
    J.E. Chung, M.C. Jeng, J.E. Moon, P.K. Ko, C. Hu, Low-voltage hot-electron currents and degradation in deep-submicrometer MOSFET’s. IEEE Trans. Electron Devices 37, 1651–1657 (1990)CrossRefGoogle Scholar
  14. 14.
    W. McMahon, A. Haggag, K. Hess, Reliability scaling issues for nanoscale devices. IEEE Trans. Nanotechnol. 2(1), 33–38 (2003)CrossRefGoogle Scholar
  15. 15.
    A. Bravaix, V. Huard, Hot-carrier degradation issues in advanced CMOS nodes, in Proceedings of the European Symposium on Reliability of Electron Devices Failure Physics and Analysis (ESREF), tutorial, 2010Google Scholar
  16. 16.
    S. Rauch, G. La Rosa, CMOS hot carrier: From physics to end of life projections, and qualification, in Proceedings of the International Reliability Physics Symposium (IRPS), tutorial, 2010Google Scholar
  17. 17.
    S.E. Tyaginov, I.A. Starkov, O. Triebl, J. Cervenka, C. Jungemann, S. Carniello, J.M. Park, H. Enichlmail, C. Kernstock, E. Seebacher, R. Minixhofer, H. Ceric, T. Grasser, Interface traps density-of-states as a vital component for hot-carrier degradation modeling. Microelectron. Reliab. 50, 1267–1272 (2010)CrossRefGoogle Scholar
  18. 18.
    Y.M. Randriamihaja, A. Zaka, V. Huard, M. Rafik, D. Rideau, D. Roy, A. Bravaix, P. Palestri, Hot carrier degradation: From defect creation modeling to their impact on NMOS parameters, in Proceedings of the International Reliability Physics Symposium (IRPS), 2012, pp. 1–4Google Scholar
  19. 19.
    Y.M. Randriamihaja, X. Federspiel, V. Huard, A. Bravaix, P. Palestri, New hot carrier degradation modeling reconsidering the role of EES in ultra short n-channel MOSFETs, in Proceedings of the International Reliability Physics Symposium (IRPS), 2013, pp. 1–5Google Scholar
  20. 20.
    S. Tyaginov, M. Bina, J. Franco, D. Osintsev, O. Triebl, B. Kaczer, T. Grasser, Physical modeling of hot-carrier degradation for short- and long-channel MOSFETs, in Proceedings of the International Reliability Physics Symposium (IRPS), 2014 (in press)Google Scholar
  21. 21.
    C. Jungemann, B. Meinerzhagen, Hierarchical Device Simulation (Springer, Wien/New York, 2003)CrossRefzbMATHGoogle Scholar
  22. 22.
    S.-M. Hong, A.T. Pham, C. Jungemann, Deterministic Solvers for the Boltzmann Transport Equation, Springer edition (Springer, New York, 2011)Google Scholar
  23. 23.
    C. Guerin, V. Huard, A. Bravaix, The energy-driven hot-carrier degradation modes of nMOSFETs. IEEE Trans. Device Mater. Reliab. 7(2), 225–235 (2007)CrossRefGoogle Scholar
  24. 24.
    A. Bravaix, V. Huard, F. Cacho, X. Federspiel, D. Roy et al., Hot-carrier degradation in decananometer CMOS nodes: From an energy driven to a unified current degradation modeling by multiple carrier degradation process, in Hot-Carrier Degradation, ed. by T. Grasser (Springer, Wien/New York, 2015)Google Scholar
  25. 25.
    S. Rauch, G. La Rosa, The energy driven paradigm of NMOSFET hot carrier effects, in Proceedings of the International Reliability Physics Symposium (IRPS), 2005Google Scholar
  26. 26.
    S.E. Rauch, G. La Rosa, The energy-driven paradigm of NMOSFET hot-carrier effects. IEEE Trans. Device Mater. Reliab. 5(4), 701–705 (2005)CrossRefGoogle Scholar
  27. 27.
    S. Rauch, F. Guarin, The energy driven hot carrier model, in Hot-Carrier Degradation, ed. by T. Grasser (Springer, Wien/New York, 2015)Google Scholar
  28. 28.
    Y.M. Randriamihaja, V. Huard, X. Federspiel, A. Zaka, P. Palestri, D. Rideau, A. Bravaix, Microscopic scale characterization and modeling of transistor degradation under HC stress. Microelectron. Reliab. 52(11), 2513–2520 (2012)CrossRefGoogle Scholar
  29. 29.
    M.G. Ancona, N.S. Saks, D. McCarthy, Lateral disrtribution of hot-carrier-induced interface traps in MOSFET’s. IEEE Trans. Electron Devices 35(12), 221–2228 (1988)CrossRefGoogle Scholar
  30. 30.
    Y. Leblebici, S.-M. Kang, Modeling of nMOS transistors for simulation of hot-carrier induced device abd circuit degradation. IEEE Trans. Comput. Aided Des. 11(2), 235–246 (1992)CrossRefGoogle Scholar
  31. 31.
    A. Acovic, G. La Rosa, Y.C. Sun, A review of hot carrier degradation mechanism in MOSFETs. Microelectron. Reliab. 36(7/8), 845–869 (1996)CrossRefGoogle Scholar
  32. 32.
    I.A. Starkov, S.E. Tyaginov, H. Enichlmair, J. Cervenka, Ch. Jungemann, S. Carniello, J.M. Park, H. Ceric, T. Grasser, Hot-carrier degradation caused interface state profile - simulations vs. experiment. J. Vac. Sci. Technol. B 29(1), 01AB09–1–01AB09–8 (2011)Google Scholar
  33. 33.
    D.J. DiMaria, J.W. Stasiak, Trap creation in silicon dioxide produced by hot electrons. J. Appl. Phys. 65(6), 2342–2356 (1989)CrossRefGoogle Scholar
  34. 34.
    D.J. DiMaria, Defect generation under substrate-hot-electron injection into ultrathin silicon dioxide layers. J. Appl. Phys. 86(4), 2100–2109 (1999)CrossRefGoogle Scholar
  35. 35.
    D.J. DiMaria, J.H. Stathis, Anode hole injection, defect generation, and breakdown in ultrathin silicon dioxide films. J. Appl. Phys. 89(9), 5015–5024 (2001)CrossRefGoogle Scholar
  36. 36.
    I. Starkov, H. Enichlmair, S. Tyaginov, T. Grasser, Analysis of the threshold voltage turn-around effect in high-voltage n-MOSFETs due to hot-carrier stress, in Proceedings of the International Reliability Physics Symposium (IRPS), 2012, 6 pp.Google Scholar
  37. 37.
    K. Hess, L.F. Register, B. Tuttle, J. Lyding, I.C. Kizilyalli, Impact of nanostructure research on conventional solid-state electronics: The giant isotope effect in hydrogen desorption and CMOS lifetime. Phys. E 3, 1–7 (1998)CrossRefGoogle Scholar
  38. 38.
    S.E. Rauch, F.J. Guarin, G. La Rosa, Impact of E-E scattering to the hot carrier degradation of deep submicron NMOSFETs. IEEE Electron Device Lett. 19(12), 463–465 (1998)CrossRefGoogle Scholar
  39. 39.
    E. Li, E. Rosenbaum, J. Tao, G.C.-F. Yeap, M.R. Lin, P. Fang, Hot-carrier effects in nMOSFETs in 0. 1 μm CMOS technology, in Proceedings of the International Reliability Physics Symposium (IRPS), 1999, pp. 253–258Google Scholar
  40. 40.
    C. Lin, S. Biesemans, L.K. Han, K. Houlihan, T. Schiml, K. Schruefer, C. Wann, R. Markhopf, Hot carrier reliability for 0. 13 μm CMOS technology with dual gate oxide thickness, in Proceedings of the International Electron Devices Meeting (IEDM), 2000, 135–138Google Scholar
  41. 41.
    R. Woltjer, A. Hamada, E. Takeda, PMOSFET hot carrier damage: Oxide charge and interface states. Semicond. Sci. Technol. 7, B581–B584 (1992)CrossRefGoogle Scholar
  42. 42.
    F.-C. Hsu, K.-Y. Chu, Temperature dependence of hot-electron induced degradation in MOSFET’s, IEEE Electron Device Lett. 5(5), 148–150 (1984)CrossRefGoogle Scholar
  43. 43.
    P.A. Childs, C.C. Leung, A onedimensional solution of the Boltzmann transport equation including eelectron–electron interactions. J. Appl. Phys. 79(1), 222–227 (1996)CrossRefGoogle Scholar
  44. 44.
    B. Ricco, E. Sangiorgi, D. Cantrarelli, Low voltage hot-electron effects in short channel MOSFETs, in Proceedings of the International Electron Devices Meeting (IEDM), 1984, pp. 92–95Google Scholar
  45. 45.
    A. Abramo, C. Fiegna, F. Venturi, Hot carrier effects in short MOSFETs at low applied voltages. IEDM Tech. Dig. 301–304 (1995)Google Scholar
  46. 46.
    J.W. Lyding, K. Hess, I.C. Kizilyalli, Reduction of hot electron degradation in metal oxide semiconductor transistors by deuterium processing. Appl. Phys. Lett. 68(18), 2526–2528 (1996)CrossRefGoogle Scholar
  47. 47.
    K. Hess, A. Haggag, W. McMahon, B. Fischer, K. Cheng, J. Lee, L. Lyding, Simulation of Si-SiO2 defect generation in CMOS chips: From atomistic structure to chip failure rates, in Proceedings of the International Electron Devices Meeting (IEDM), 2000, pp. 93–96Google Scholar
  48. 48.
    A. Haggag, W. McMahon, K. Hess, K. Cheng, J. Lee, J. Lyding, High-performance chip reliability from short-time-tests. statistical models for optical interconnect and HCI/TDDB/NBTI deep-submicron transistor failures, in Proceedings of the International Reliability Physics Symposium (IRPS), 2001, pp. 271–279Google Scholar
  49. 49.
    C. Guerin, V. Huard, A. Bravaix, General framework about defect creation at the Si∕SiO2 interface. J. Appl. Phys. 105, 114513–1–114513–12 (2009)Google Scholar
  50. 50.
    B.N.J. Persson, Ph. Avouris, Local bond breaking via STM-induced excitations: The role of temperature. Surf. Sci. 390(1–3), 45–54 (1997)CrossRefGoogle Scholar
  51. 51.
    J.W. Lyding, K. Hess, G.C. Abeln, D.S. Thompson, J.S. Moore, M.C. Hersam, E.T. Foley, J. Lee, S.T. Hwang, H. Choi, Ph. Avouris, I.C. Kizialli, Ultrahigh vacuum-scanning tunneling microscopy nanofabrication and hydrogen/deuterium desorption from silicon surfaces: Implications for complementary metal oxide semiconductor technology. Appl. Surf. Sci. 13-132, 221–230 (1998)CrossRefGoogle Scholar
  52. 52.
    K. Stokbro, C. Thirstrup, M. Sakurai, U. Quaade, B.Y.-K. Hu, F. Perez-Murano, F. Grey, STM-induced hydrogen desorption via a hole resonance. Phys. Rev. Lett. 80, 2618–2621 (1998)CrossRefGoogle Scholar
  53. 53.
    A. Stesmans, Revision of H2 passivation of P2 interface defects in standard (111)Si∕SiO2. Appl. Phys. Lett. 68(19), 2723–2725 (1996)CrossRefGoogle Scholar
  54. 54.
    A. Stesmans, Passivation of Pb0 and Pb1 interface defects in thermal (100) Si∕SiO2 with molecular hydrogen. Appl. Phys. Lett. 68(15), 2076–2078 (1996)CrossRefGoogle Scholar
  55. 55.
    G. Pobegen, S. Tyaginov, M. Nelhiebel, T. Grasser, Observation of normally distributed activation energies for the recovery from hot carrier damage. IEEE Electron Device Lett. 34(8), 939–941 (2013)CrossRefGoogle Scholar
  56. 56.
    K. Hess, A. Haggag, W. McMahon, K. Cheng, J. Lee, J. Lyding, The physics of determining chip reliability. Circuits Devices Mag. 33–38 (2001)Google Scholar
  57. 57.
    O. Penzin, A. Haggag, W. McMahon, E. Lyumkis, K. Hess, MOSFET degradation kinetics and its simulation. IEEE Trans. Electron Devices 50(6), 1445–1450 (2003)CrossRefGoogle Scholar
  58. 58.
    C. Guerin, V. Huard, A. Bravaix, The energy-driven hot carrier degradation modes, in Proceedings of the International Reliability Physics Symposium (IRPS), 2007, pp. 692–693Google Scholar
  59. 59.
    A. Bravaix, V. Huard, D. Goguenheim, E. Vincent, Hot-carrier to cold-carrier device lifetime modeling with temperature for low power 40nm Si-Bulk NMOS and PMOS FETs, in Proceedings of the International Electron Devices Meeting (IEDM), 2011, pp. 622–625Google Scholar
  60. 60.
    S.E. Tyaginov, I.A. Starkov, O. Triebl, J. Cervenka, C. Jungemann, S. Carniello, J.M. Park, H. Enichlmair, M. Karner, Ch. Kernstock, E. Seebacher, R. Minixhofer, H. Ceric, T. Grasser, Hot-carrier degradation modeling using full-band Monte-Carlo simulations, in Proceedings of the International Symposium on the Physical & Failure Analysis of Integrated Circuits (IPFA), 2010Google Scholar
  61. 61.
    S. Tyaginov, I. Starkov, O. Triebl, H. Enichlmair, C. Jungemann, J.M. Park, H. Ceric, T. Grasser, Secondary generated holes as a crucial component for modeling of HC degradation in high-voltage n-MOSFET, in Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2011, pp. 123–126Google Scholar
  62. 62.
    S. Tyaginov, I. Starkov, Ch. Jungemann, H. Enichlmair, J.M. Park, T. Grasser, Impact of the carrier distribution function on hot-carrier degradation modeling, in Proceedings of the European Solid-State Device Research Conference (ESSDERC), 2011, pp. 151–154Google Scholar
  63. 63.
    Institute for Microelectronic, TU Wien, MiniMOS-NT Device and Circuit Simulator Google Scholar
  64. 64.
    I. Starkov, H. Enichlmair, S. Tyaginov, T. Grasser, Charge-pumping extraction techniques for hot-carrier induced interface and oxide trap spatial distributions in MOSFETs, in Proceedings of the International Symposium on the Physical & Failure Analysis of Integrated Circuits (IPFA), 2012, pp. 1–6Google Scholar
  65. 65.
    T. Grasser, T.-W. Tang, H. Kosina, S. Selberherr, A review of hydrodynamic and energy-transport models for semiconductor device simulation. Proc. IEEE 91(2), 251–273 (2003)CrossRefGoogle Scholar
  66. 66.
    T. Grasser, C. Jungemann, H. Kosina, B. Meinerzhagen, S. Selberherr, Advanced transport models for sub-micrometer devices, in Proceedings of the Simulation of Semiconductor Processes and Devices (SISPAD), 2004, pp. 1–8Google Scholar
  67. 67.
    A. Zaka, Q. Rafhay, M. Iellina, P. Palestri, R. Clerc, D. Rideau, D. Garetto, J. Singer, G. Pananakakis, C. Tavernier, H. Jaouen, On the accuracy of current TCAD hot carrier injection models in nanoscale devices. Solid State Electron. 54(12), 1669–1674 (2010)CrossRefGoogle Scholar
  68. 68.
    A. Gehring, T. Grasser, H. Kosina, S. Selberherr, Simulation of hot-electron oxide tunneling current based on a non-Maxwellian electron energy distribution function. J. Appl. Phys. 92(10), 6019–6027 (2002)CrossRefGoogle Scholar
  69. 69.
    T. Grasser, H. Kosina, S. Selberherr, Influence of the distribution function shape and the band structure on impact ionization modeling. J. Appl. Phys. 90(12), 6165–6171 (2001)CrossRefGoogle Scholar
  70. 70.
    A. Gnudi, D. Ventura, G. Baccarani, One-dimensional simulation of a bipolar transistor by means of spherical harmonics expansion of the Boltzmann transport equation, in Proceedings of the Simulation of Semiconductor Devices and Processes (SISDEP), vol. 4, 1991, pp. 205–213Google Scholar
  71. 71.
    A. Gnudi, D. Ventura, G. Baccarani, F. Oden, Two-dimensional MOSFET simulations by means of a multidimensional spherical harmonics expansion of the Boltzmann transport equation. Solid State Electron. 36(4), 575–581 (1993)CrossRefGoogle Scholar
  72. 72.
    K. Rupp, T. Grasser, A. Jungel, On the feasibility of spherical harmonics expansions of the Boltzmann transport equation for three-dimensional device geometries, in Proceedings of the International Electron Devices Meeting (IEDM), 2011, pp. 789–792Google Scholar
  73. 73.
    K. Rupp, P. Lagger, T. Grasser, A. Jüngel, Inclusion of carrier-carrier-scattering into arbitrary-order spherical harmonics expansions of the Boltzmann transport equation, in Proceedings of the International Workshop on Computational Electronics (IWCE), 2012, pp. 1–4Google Scholar
  74. 74.
    M. Bina, K. Rupp, S. Tyaginov, O. Triebl, T. Grasser, Modeling of hot carrier degradation using a spherical harmonics expansion of the bipolar Boltzmann transport equation, in Proceedings of the International Electron Devices Meeting (IEDM), 2012, pp. 713–716Google Scholar
  75. 75.
    S. Tyaginov, M. Bina, J. Franco, D. Osintsev, Y. Wimmer, O. Triebl, B. Kaczer, T. Grasser, Essential ingredients for modeling of hot-carrier degradation in ultra-scaled MOSFETs, in Proceedings of the International Integrated Reliability Workshop (IIRW), 2013, pp. 98–101Google Scholar
  76. 76.
    J.W. McPherson, Quantum mechanical treatment of Si-O bond breakage in silica under time dependent dielectric breakdown testing, in Proceedings of the International Reliability Physics Symposium (IRPS), 2007, pp. 209–216Google Scholar
  77. 77.
    V. Huard, M. Denais, C. Parthasarathy, NBTI degradation: From physical mechanisms to modelling. Microelectron. Reliab. 46(1), 1–23 (2006)CrossRefGoogle Scholar
  78. 78.
    S. Tyaginov, M. Bina, J. Franco, Y. Wimmer, D. Osintsev, B. Kaczer, T. Grasser, A predictive physical model for hot-carrier degradation in ultra-scaled MOSFETs, in Proceedings of the Simulation of Semiconductor Processes and Devices (SISPAD), 2014 (submitted)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute for MicroelectronicsTechnische Universität WienWienAustria

Personalised recommendations