A Methodology for the Diagnostic of Aircraft Engine Based on Indicators Aggregation

  • Tsirizo Rabenoro
  • Jérôme Lacaille
  • Marie Cottrell
  • Fabrice Rossi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8557)

Abstract

Aircraft engine manufacturers collect large amount of engine related data during flights. These data are used to detect anomalies in the engines in order to help companies optimize their maintenance costs. This article introduces and studies a generic methodology that allows one to build automatic early signs of anomaly detection in a way that is understandable by human operators who make the final maintenance decision. The main idea of the method is to generate a very large number of binary indicators based on parametric anomaly scores designed by experts, complemented by simple aggregations of those scores. The best indicators are selected via a classical forward scheme, leading to a much reduced number of indicators that are tuned to a data set. We illustrate the interest of the method on simulated data which contain realistic early signs of anomalies.

Keywords

Health Monitoring Turbofan Fusion Anomaly Detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Basseville, M., Nikiforov, I.V.: Detection of abrupt changes: theory and applications. Journal of the Royal Statistical Society-Series A Statistics in Society 158(1), 185 (1995)CrossRefGoogle Scholar
  2. 2.
    Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)CrossRefMATHGoogle Scholar
  3. 3.
    Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and regression trees. Wadsworth & Brooks, Monterey (1984)MATHGoogle Scholar
  4. 4.
    Côme, E., Cottrell, M., Verleysen, M., Lacaille, J.: Aircraft engine health monitoring using self-organizing maps. In: Perner, P. (ed.) ICDM 2010. LNCS, vol. 6171, pp. 405–417. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Flandrois, X., Lacaille, J., Masse, J.R., Ausloos, A.: Expertise transfer and automatic failure classification for the engine start capability system. AIAA Infotech, Seattle (2009)Google Scholar
  6. 6.
    Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. The Journal of Machine Learning Research 3, 1157–1182 (2003)MATHGoogle Scholar
  7. 7.
    Japkowicz, N., Stephen, S.: The class imbalance problem: A systematic study. Intelligent Data Analysis 6(5), 429–449 (2002)MATHGoogle Scholar
  8. 8.
    Kotsiantis, S.B., Zaharakis, I., Pintelas, P.: Supervised machine learning: A review of classification techniques (2007)Google Scholar
  9. 9.
    Lacaille, J.: A maturation environment to develop and manage health monitoring algorithms. PHM, San Diego (2009)Google Scholar
  10. 10.
    Lacaille, J.: Standardized failure signature for a turbofan engine. In: 2009 IEEE Aerospace Conference, pp. 1–8. IEEE (2009)Google Scholar
  11. 11.
    Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(8), 1226–1238 (2005)CrossRefGoogle Scholar
  12. 12.
    Rabenoro, T., Lacaille, J.: Instants extraction for aircraft engine monitoring. AIAA Infotech@Aerospace (2013)Google Scholar
  13. 13.
    Ruta, D., Gabrys, B.: Classifier selection for majority voting. Information Fusion 6(1), 63–81 (2005)CrossRefGoogle Scholar
  14. 14.
    Tumer, I.Y., Bajwa, A.: A survey of aircraft engine health monitoring systems. In: Proc. 35th Joint Propulsion Conf. (1999)Google Scholar
  15. 15.
    Vasov, L., Stojiljković, B.: Reliability levels estimation of JT8D-9 and CFM56-3 turbojet engines. FME Transactions 35(1), 41–45 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tsirizo Rabenoro
    • 1
  • Jérôme Lacaille
    • 1
  • Marie Cottrell
    • 2
  • Fabrice Rossi
    • 2
  1. 1.Snecma, Groupe SafranMoissy CramayelFrance
  2. 2.SAMM (EA 4543)Université Paris 1Paris Cedex 13France

Personalised recommendations