Advertisement

Asynchronous User Interaction and Tool Integration in Isabelle/PIDE

  • Makarius Wenzel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8558)

Abstract

Historically, the LCF tradition of interactive theorem proving was tied to the read-eval-print loop, with sequential and synchronous evaluation of prover commands given on the command-line. This user-interface technology was adequate when R. Milner introduced his LCF proof assistant in the 1970-ies, but it severely limits the potential of current multicore hardware and advanced IDE front-ends.

Isabelle/PIDE breaks this loop and retrofits the read-eval-print phases into an asynchronous model of document-oriented proof processing. Instead of feeding a sequence of individual commands into the prover process, the primary interface works via edits over a family of document versions. Execution is implicit and managed by the prover on its own account in a timeless and stateless manner. Various aspects of interactive proof checking are scheduled according to requirements determined by the front-end perspective on the proof document, while making adequate use of the CPU resources on multicore hardware on the back-end.

Recent refinements of Isabelle/PIDE provide an explicit concept of asynchronous print functions over existing proof states. This allows to integrate long-running or potentially non-terminating tools into the document-model. Applications range from traditional proof state output (which may consume substantial time in interactive development) to automated provers and dis-provers that report on existing proof document content (e.g. Sledgehammer, Nitpick, Quickcheck in Isabelle/HOL). Moreover, it is possible to integrate query operations via additional GUI panels with separate input and output (e.g. for Sledgehammer or find-theorems). Thus the Prover IDE provides continuous proof processing, augmented by add-on tools that help the user to continue writing proofs.

Keywords

Document Version Tool Integration Proof Assistant Node Overlay Proof Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asperti, A., Ricciotti, W.: A web interface for Matita. In: Jeuring, J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS (LNAI), vol. 7362, pp. 417–421. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Asperti, A., Sacerdoti Coen, C., Tassi, E., Zacchiroli, S.: User interaction with the Matita proof assistant. Journal of Automated Reasoning 39(2) (2007)Google Scholar
  3. 3.
    Aspinall, D.: Proof General: A generic tool for proof development. In: Graf, S., Schwartzbach, M. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 38–43. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Aspinall, D., Lüth, C., Winterstein, D.: A framework for interactive proof. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) MKM/CALCULEMUS 2007. LNCS (LNAI), vol. 4573, pp. 161–175. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Kapur, D., Vandevoorde, M.T.: DLP: A paradigm for parallel interactive theorem proving (1996)Google Scholar
  6. 6.
    Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16. LNCS, vol. 6355, pp. 348–370. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Lüth, C., Ring, M.: A web interface for Isabelle: The next generation. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS, vol. 7961, pp. 326–329. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Ring, M., Lüth, C.: Collaborative interactive theorem proving with Clide. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS (LNAI), vol. 8558, pp. 467–482. Springer, Heidelberg (2014)Google Scholar
  9. 9.
    Odersky, M., et al.: An overview of the Scala programming language. Technical Report IC/2004/64, EPF Lausanne (2004)Google Scholar
  10. 10.
    Tankink, C.: Documentation and Formal Mathematics — Web Technology meets Theorem Proving. PhD thesis, Radboud University Nijmegen (2013)Google Scholar
  11. 11.
    Wenzel, M.: Isabelle as document-oriented proof assistant. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) Calculemus/MKM 2011. LNCS (LNAI), vol. 6824, pp. 244–259. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Wenzel, M.: Asynchronous proof processing with Isabelle/Scala and Isabelle/jEdit. In: Coen, C.S., Aspinall, D. (eds.) User Interfaces for Theorem Provers (UITP 2010). ENTCS (July 2010)Google Scholar
  13. 13.
    Wenzel, M.: Isabelle/jEdit – A prover IDE within the PIDE framework. In: Jeuring, J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS (LNAI), vol. 7362, pp. 468–471. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Wenzel, M.: Isabelle/jEdit. Part of Isabelle distribution (December 2013), http://isabelle.in.tum.de/website-Isabelle2013-2/dist/Isabelle2013-2/doc/jedit.pdf
  15. 15.
    Wenzel, M.: PIDE as front-end technology for Coq (2013), http://arxiv.org/abs/1304.6626
  16. 16.
    Wenzel, M.: READ-EVAL-PRINT in parallel and asynchronous proof-checking. In: Kaliszyk, C., Lüth, C. (eds.) User Interfaces for Theorem Provers (UITP 2012). EPTCS, vol. 118 (2013)Google Scholar
  17. 17.
    Wenzel, M.: Shared-memory multiprocessing for interactive theorem proving. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 418–434. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Wiedijk, F. (ed.): The Seventeen Provers of the World. LNCS (LNAI), vol. 3600. Springer, Heidelberg (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Makarius Wenzel
    • 1
    • 2
  1. 1.Univ. Paris-Sud, Laboratoire LRI, UMR8623OrsayFrance
  2. 2.CNRSOrsayFrance

Personalised recommendations