Advertisement

RNA Binding Proteins and the Genesis of Neurodegenerative Diseases

  • Benjamin Wolozin
  • Daniel Apicco
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 822)

Abstract

Recent advances in neurodegenerative diseases point to novel mechanisms of protein aggregation that revolve around the unique biology of RNA binding proteins. RNA binding proteins normally are present in the nucleus. Under conditions of cell stress these RNA binding proteins translocate to the cytoplasm where they form stress granules, which function in part to sequester specialized transcript and promote translation of protective proteins. Studies in humans show that pathological aggregates occurring in ALS, Alzheimer’s disease, and other dementias co-localize with stress granules. One increasingly appealing hypothesis is that mutations in RNA binding proteins or prolonged periods of stress cause formation of very stable, pathological stress granules. The consolidation of RNA binding proteins away from the nucleus and neuronal arbors into pathological stress granules might impair the normal physiological activities of these RNA binding proteins causing the neurodegeneration associated with these diseases. Conversely, therapeutic strategies focusing on reducing formation of pathological stress granules might be neuroprotective.

Keywords

Amyotrophic Lateral Sclerosis Stress Granule Unique Biology mRNA Binding Protein Neuronal Arbor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The research described above was supported by grants from NIEHS, Brightfocus foundation, Alzheimer Association, CurePSP foundation, and the Cure Alzheimer Foundation.

References

  1. 1.
    Vanderweyde T, Yu H, Varnum M, Liu-Yesucevitz L, Citro A, Ikezu T, Duff K, Wolozin B (2012) Contrasting pathology of stress granule proteins TIA-1 and G3BP in tauopathies. J Neurosci 32(24):8270–8283PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Vanderweyde T, Youmans K, Liu-Yesucevitz L, Wolozin B (2013) Role of stress granules and RNA-binding proteins in neurodegeneration: a mini-review. Gerontology 59(6):524–533CrossRefPubMedGoogle Scholar
  3. 3.
    Liu-Yesucevitz L, Bassell GJ, Gitler AD, Hart AC, Klann E, Richter JD, Warren ST, Wolozin B (2011) Local RNA translation at the synapse and in disease. J Neurosci 31(45):16086–16093PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Heyd F, Lynch KW (2011) Degrade, move, regroup: signaling control of splicing proteins. Trends Biochem Sci 36(8):397–404PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Han TW, Kato M, Xie S, Wu LC, Mirzaei H, Pei J, Chen M, Xie Y, Allen J, Xiao G, McKnight SL (2012) Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 149(4):768–779CrossRefPubMedGoogle Scholar
  6. 6.
    Kato M, Han TW, Xie S, Shi K, Du X, Wu LC, Mirzaei H, Goldsmith EJ, Longgood J, Pei J, Grishin NV, Frantz DE, Schneider JW, Chen S, Li L, Sawaya MR, Eisenberg D, Tycko R, McKnight SL (2012) Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149(4):753–767CrossRefPubMedGoogle Scholar
  7. 7.
    Thomas MG, Loschi M, Desbats MA, Boccaccio GL (2011) RNA granules: the good, the bad and the ugly. Cell Signal 23(2):324–334PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Krichevsky AM, Kosik KS (2001) Neuronal RNA granules: a link between RNA localization and stimulation-dependent translation. Neuron 32(4):683–696CrossRefPubMedGoogle Scholar
  9. 9.
    Hoeffer CA, Klann E (2010) mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci 33(2):67–75PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O (2009) Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol 11(9):1143–1149CrossRefPubMedGoogle Scholar
  11. 11.
    Schratt G (2009) microRNAs at the synapse. Nat Rev Neurosci 10(12):842–849CrossRefPubMedGoogle Scholar
  12. 12.
    Anderson P, Kedersha N (2008) Stress granules: the Tao of RNA triage. Trends Biochem Sci 33(3):141–150CrossRefPubMedGoogle Scholar
  13. 13.
    Kedersha NL, Gupta M, Li W, Miller I, Anderson P (1999) RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol 147(7):1431–1442PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Boyce M, Bryant KF, Jousse C, Long K, Harding HP, Scheuner D, Kaufman RJ, Ma D, Coen DM, Ron D, Yuan J (2005) A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307(5711):935–939CrossRefPubMedGoogle Scholar
  15. 15.
    Mazroui R, Sukarieh R, Bordeleau ME, Kaufman RJ, Northcote P, Tanaka J, Gallouzi I, Pelletier J (2006) Inhibition of ribosome recruitment induces stress granule formation independently of eukaryotic initiation factor 2alpha phosphorylation. Mol Biol Cell 17(10):4212–4219PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Emara MM, Ivanov P, Hickman T, Dawra N, Tisdale S, Kedersha N, Hu GF, Anderson P (2010) Angiogenin-induced tRNA-derived stress-induced RNAs promote stress-induced stress granule assembly. J Biol Chem 285(14):10959–10968PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Dang Y, Kedersha N, Low WK, Romo D, Gorospe M, Kaufman R, Anderson P, Liu JO (2006) Eukaryotic initiation factor 2alpha-independent pathway of stress granule induction by the natural product pateamine A. J Biol Chem 281(43):32870–32878CrossRefPubMedGoogle Scholar
  18. 18.
    Wolozin B (2012) Regulated protein aggregation: stress granules and neurodegeneration. Mol Neurodegener 7:56PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Kedersha N, Cho MR, Li W, Yacono PW, Chen S, Gilks N, Golan DE, Anderson P (2000) Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules. J Cell Biol 151(6):1257–1268PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Johnson JO, Pioro EP, Boehringer A, Chia R, Feit H, Renton AE, Pliner HA, Abramzon Y, Marangi G, Winborn BJ, Gibbs JR, Nalls MA, Morgan S, Shoai M, Hardy J, Pittman A, Orrell RW, Malaspina A, Sidle KC, Fratta P, Harms MB, Baloh RH, Pestronk A, Weihl CC, Rogaeva E, Zinman L, Drory VE, Borghero G, Mora G, Calvo A, Rothstein JD, ITALSGEN Consortium, Drepper C, Sendtner M, Singleton AB, Taylor JP, Cookson MR, Restagno G, Sabatelli M, Bowser R, Chio A, Traynor BJ (2014) Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nat Neurosci 17(5):664–666PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Furukawa Y, Kaneko K, Matsumoto G, Kurosawa M, Nukina N (2009) Cross-seeding fibrillation of Q/N-rich proteins offers new pathomechanism of polyglutamine diseases. J Neurosci 29(16):5153–5162CrossRefPubMedGoogle Scholar
  22. 22.
    Liu-Yesucevitz L, Lin AY, Ebata A, Boon JY, Reid W, Xu YF, Kobrin K, Murphy GJ, Petrucelli L, Wolozin B (2014) ALS-linked mutations enlarge TDP-43-enriched neuronal RNA granules in the dendritic arbor. J Neurosci 34(12):4167–4174PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Alami NH, Smith RB, Carrasco MA, Williams LA, Winborn CS, Han SS, Kiskinis E, Winborn B, Freibaum BD, Kanagaraj A, Clare AJ, Badders NM, Bilican B, Chaum E, Chandran S, Shaw CE, Eggan KC, Maniatis T, Taylor JP (2014) Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron 81(3):536–543PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Departments of Pharmacology and NeurologyBoston University School of MedicineBostonUSA

Personalised recommendations