GeNeDis 2014 pp 213-220 | Cite as

Nanothermodynamics Mediates Drug Delivery

  • Aikaterina L. Stefi
  • Evangelia Sarantopoulou
  • Zoe Kollia
  • Nikolaos Spyropoulos-Antonakakis
  • Athanasia Bourkoula
  • Panagiota S. Petrou
  • Sotirios Kakabakos
  • Georgios Soras
  • Panagiotis N. Trohopoulos
  • Alexey S. Nizamutdinov
  • Vadim V. Semashko
  • Alkiviadis Constantinos Cefalas
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 822)

Abstract

The efficiency of penetration of nanodrugs through cell membranes imposes further complexity due to nanothermodynamic and entropic potentials at interfaces. Action of nanodrugs is effective after cell membrane penetration. Contrary to diffusion of water diluted common molecular drugs, nanosize imposes an increasing transport complexity at boundaries and interfaces (e.g., cell membrane). Indeed, tiny dimensional systems brought the concept of “nanothermodynamic potential,” which is proportional to the number of nanoentities in a macroscopic system, from either the presence of surface and edge effects at the boundaries of nanoentities or the restriction of the translational and rotational degrees of freedom of molecules within them. The core element of nanothermodynamic theory is based on the assumption that the contribution of a nanosize ensemble to the free energy of a macroscopic system has its origin at the excess interaction energy between the nanostructured entities. As the size of a system is increasing, the contribution of the nanothermodynamic potential to the free energy of the system becomes negligible. Furthermore, concentration gradients at boundaries, morphological distribution of nanoentities, and restriction of the translational motion from trapping sites are the source of strong entropic potentials at the interfaces. It is evident therefore that nanothermodynamic and entropic potentials either prevent or allow enhanced concentration very close to interfaces and thus strongly modulate nanoparticle penetration within the intracellular region. In this work, it is shown that nano-sized polynuclear iron (III)-hydroxide in sucrose nanoparticles have a nonuniform concentration around the cell membrane of macrophages in vivo, compared to uniform concentration at hydrophobic prototype surfaces. The difference is attributed to the presence of entropic and nanothermodynamic potentials at interfaces.

Notes

Acknowledgments

Partial financial support from the European Union, under the FP7-NMP-2012-LARGE-6 “CosmoPhos-Nano” project (reference number: 310337), and from the Russian Government under the Grand No. 02.A03.21.0002 is gratefully acknowledged.

References

  1. 1.
    Sanhai WR, Sakamoto JH, Canady R et al (2008) Seven challenges for nanomedicine. Nat Nanotechnol 3:242–244CrossRefPubMedGoogle Scholar
  2. 2.
    Sousa AA, Kruhlak MJ (2013) Introduction: nanoimaging techniques in biology. Methods Mol Biol 950:1–10PubMedGoogle Scholar
  3. 3.
    Riehemann K, Schneider SW, Luger TA et al (2009) Nanomedicine: challenge and perspectives. Angew Chem Int Ed Engl 48(5):872–897PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Tasciotti E, Liu X, Bhavane R et al (2008) Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat Nanotechnol 3:151–157CrossRefPubMedGoogle Scholar
  5. 5.
    Peer D, Karp JM, Hong S et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760CrossRefPubMedGoogle Scholar
  6. 6.
    LaVan DA, McGuire T, Langer R (2003) Small-scale systems for in vivo drug delivery. Nat Biotechnol 21(10):1184–1191CrossRefPubMedGoogle Scholar
  7. 7.
    Wu Y, Sefah K, Liu H et al (2010) DNA aptamer–micelle as an efficient detection/delivery vehicle toward cancer cells. P Natl Acad Sci U S A 107:5–10CrossRefGoogle Scholar
  8. 8.
    Dhar S, Gu FX, Langer R et al (2008) Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. P Natl Acad Sci U S A 105:17356–17361CrossRefGoogle Scholar
  9. 9.
    Gu F, Zhang L, Teply BA et al (2008) Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. P Natl Acad Sci U S A 105:2586–2591CrossRefGoogle Scholar
  10. 10.
    Dolmans DE, Fukumura D, Jain RK et al (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3:380–387CrossRefPubMedGoogle Scholar
  11. 11.
    Jang WD, Nakagishi Y, Nishiyama N et al (2006) Polyion complex micelles for photodynamic therapy: incorporation of dendritic photosensitizer excitable at long wavelength relevant to improved tissue-penetrating property. J Control Release 113:73–79CrossRefPubMedGoogle Scholar
  12. 12.
    Yang Z, Kang S, Zhou R (2014) Nanomedicine: de novo design of nanodrugs (review article). Nanoscale 6:663–677CrossRefPubMedGoogle Scholar
  13. 13.
    Jassby D (2011) Impact of the particle aggregation on nanoparticle reactivity, Department of Civil and Environmental Engineering. Dissertation, Duke UniversityGoogle Scholar
  14. 14.
    Pranami G (2009) Understanding nanoparticle aggregation. Dissertation, Iowa State University, Ames, Paper 10859Google Scholar
  15. 15.
    Zhang XF, Xu HJ (1993) Influence of halogenation and aggregation on photosensitizing properties of zinc phthalocyanine (ZnPC). J Chem Soc Faraday Trans 89:3347–3351CrossRefGoogle Scholar
  16. 16.
    Siddiqui MA, Alhadlaq HA, Ahmad J et al (2013) Copper oxide nanoparticles induced mitochondria mediated apoptosis in human hepatocarcinoma cells. PloS One 8(8):e69534PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Marrache S, Dhar S (2012) Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. P Natl Acad Sci U S A 109:16288–16293CrossRefGoogle Scholar
  18. 18.
    Mutter AC, Norman JA, Tiedemann MT et al (2014) Rational design of a zinc phthalocyanine binding protein. J Struct Biol 185:178–185PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Kažukauskas V, Arlauskas A, Pranaitis M et al (2010) Conductivity, charge carrier mobility and ageing of ZnPc/C60 solar cells. Opt Mater 32(12):1676–1680CrossRefGoogle Scholar
  20. 20.
    Thiagarajan G, Greish K, Ghandehari H (2013) Charge affects the oral toxicity of poly(amidoamine) dendrimers. Eur J Pharm Biopharm 84(2):330–334CrossRefPubMedGoogle Scholar
  21. 21.
    Magalhaes MAO, Glogauer M (2010) Pivotal advance: phospholipids determine net membrane surface charge resulting in differential localization of active Rac1 and Rac2. J Leukoc Biol 87(4):545–555CrossRefPubMedGoogle Scholar
  22. 22.
    Yeung T, Gilbert GE, Shi J et al (2008) Membrane phosphatidylserine regulates surface charge and protein localization. Science 319(5860):210–213CrossRefPubMedGoogle Scholar
  23. 23.
    Trepagnier EH, Jarzynski C, Ritort F et al (2004) Experimental test of Hatano and Sasa’s nonequilibrium steady-state equality. P Natl Acad Sci U S A 101:15038–15041CrossRefGoogle Scholar
  24. 24.
    Carberry DM, Reid JC, Wang GM et al (2004) Fluctuations and irreversibility: an experimental demonstration of a second-law-like theorem using a colloidal particle held in an optical trap. Phys Rev Lett 92:140601CrossRefPubMedGoogle Scholar
  25. 25.
    Park BJ, Furst EM (2010) Fluid-interface templating of two-dimensional colloidal crystals. Soft Matter 6:485–488CrossRefGoogle Scholar
  26. 26.
    Sarantopoulou E, Kollia Z, Cefalas AC et al (2008) Surface nano/micro functionalization of PMMA thin films by 157 nm irradiation for sensing applications. Appl Surf Sci 254:1710–1719CrossRefGoogle Scholar
  27. 27.
    Cefalas AC, Sarantopoulou E, Kollia Z et al (2012) Entropic nanothermodynamic potential from molecular trapping within photon induced nano-voids in photon processed PDMS layers. Soft Matter 8:5561–5574CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Aikaterina L. Stefi
    • 1
  • Evangelia Sarantopoulou
    • 1
  • Zoe Kollia
    • 1
  • Nikolaos Spyropoulos-Antonakakis
    • 1
  • Athanasia Bourkoula
    • 2
  • Panagiota S. Petrou
    • 2
  • Sotirios Kakabakos
    • 2
  • Georgios Soras
    • 3
  • Panagiotis N. Trohopoulos
    • 4
  • Alexey S. Nizamutdinov
    • 5
  • Vadim V. Semashko
    • 5
  • Alkiviadis Constantinos Cefalas
    • 1
    • 6
  1. 1.National Hellenic Research FoundationTheoretical and Physical Chemistry InstituteAthensGreece
  2. 2.N.C.S.R. “Demokritos”Institute for Nuclear and Radiological Sciences, Energy, Technology and SafetyAthensGreece
  3. 3.RAFARM S.A.AthensGreece
  4. 4.CosmoPHOS LtdThessalonikiGreece
  5. 5.Kazan Federal UniversityKazanRussia
  6. 6.Visiting Professor, Kazan Federal UniversityKazanRussia

Personalised recommendations