Advertisement

Abstract

Deduction modulo is a framework in which theories are integrated into proof systems such as natural deduction or sequent calculus by presenting them using rewriting rules. When only terms are rewritten, cut admissibility in those systems is equivalent to the confluence of the rewriting system, as shown by Dowek, RTA 2003, LNCS 2706. This is no longer true when considering rewriting rules involving propositions. In this paper, we show that, in the same way that it is possible to recover confluence using Knuth-Bendix completion, one can regain cut admissibility in the general case using standard saturation techniques. This work relies on a view of proposition rewriting rules as oriented clauses, like term rewriting rules can be seen as oriented equations. This also leads us to introduce an extension of deduction modulo with conditional term rewriting rules.

Keywords

Inference Rule Proof System Natural Deduction Saturation Process Sequent Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Assaf, A., Burel, G.: Translating HOL to Dedukti (2013) (submitted)Google Scholar
  2. 2.
    Bachmair, L., Dershowitz, N., Plaisted, D.: Completion without failure. In: Aït-Kaci, H., Nivat, M. (eds.) Resolution of Equations in Algebraic Structures. Rewriting Techniques, vol. 2, pp. 1–30. Academic Press Inc. (1989)Google Scholar
  3. 3.
    Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. Journal of Logic and Computation 4(3), 1–31 (1994)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 19–99. Elsevier and MIT Press (2001)Google Scholar
  5. 5.
    Burel, G.: From axioms to rewriting rules, available on author’s web pageGoogle Scholar
  6. 6.
    Burel, G.: Experimenting with deduction modulo. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 162–176. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Cousineau, D., Dowek, G.: Embedding pure type systems in the lambda-Pi-calculus modulo. In: Della Rocca, S.R. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 102–117. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Degtyarev, A., Voronkov, A.: Equality reasoning in sequent-based calculi. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 611–706. Elsevier and MIT Press (2001)Google Scholar
  9. 9.
    Delahaye, D., Doligez, D., Gilbert, F., Halmagrand, P., Hermant, O.: Zenon modulo: When Achilles outruns the tortoise using deduction modulo. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 274–290. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Dershowitz, N., Okada, M., Sivakumar, G.: Confluence of conditional rewrite systems. In: Kaplan, S., Jouannaud, J.-P. (eds.) CTRS 1987. LNCS, vol. 308, pp. 31–44. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  11. 11.
    Dowek, G.: What is a theory? In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 50–64. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Dowek, G.: Confluence as a cut elimination property. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 2–13. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Dowek, G.: Polarized resolution modulo. In: Calude, C.S., Sassone, V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp. 182–196. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. Journal of Automated Reasoning 31(1), 33–72 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Ganzinger, H., Stuber, J.: Superposition with equivalence reasoning and delayed clause normal form transformation. Inf. Comput. 199(1-2), 3–23 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Hermant, O.: Resolution is cut-free. Journal of Automated Reasoning 44(3), 245–276 (2009)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Hurd, J.: The OpenTheory standard theory library. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 177–191. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Jacquel, M., Berkani, K., Delahaye, D., Dubois, C.: Tableaux modulo theories using superdeduction – an application to the verification of B proof rules with the Zenon automated theorem prover. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 332–338. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press, Oxford (1970)CrossRefGoogle Scholar
  20. 20.
    Robinson, J.A.: A machine-oriented logic based on the resolution principle. Journal of the ACM 12, 23–41 (1965)CrossRefzbMATHGoogle Scholar
  21. 21.
    Vorobyov, S.G.: On the arithmetic inexpressiveness of term rewriting systems. In: LICS, pp. 212–217 (1988)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Guillaume Burel
    • 1
  1. 1.ÉNSIIE/CédricÉvry cedexFrance

Personalised recommendations