Advertisement

Termination of Cycle Rewriting

  • Hans Zantema
  • Barbara König
  • H. J. Sander Bruggink
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8560)

Abstract

String rewriting can not only be applied on strings, but also on cycles and even on general graphs. In this paper we investigate termination of string rewriting applied on cycles, shortly denoted as cycle rewriting, which is a strictly stronger requirement than termination on strings. Most techniques for proving termination of string rewriting fail for proving termination of cycle rewriting, but match bounds and some variants of matrix interpretations can be applied. Further we show how any terminating string rewriting system can be transformed to a terminating cycle rewriting system, preserving derivational complexity.

Keywords

Turing Machine Computable Function Graph Transformation Type Graph Satisfying Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bruggink, H.J.S., König, B., Zantema, H.: Termination analysis for graph transformation systems (submitted, 2014), http://www.ti.inf.uni-due.de/fileadmin/public/bruggink/gtst.pdf
  2. 2.
    Corradini, A., Montanari, U., Rossi, F.: Graph processes. Fundamenta Informaticae 26(3/4), 241–265 (1996)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Endrullis, J., Hofbauer, D., Waldmann, J.: Decomposing Terminating Rewrite Relations. In: Proc. Workshop on Termination (WST 2006), pp. 39–43 (2006)Google Scholar
  4. 4.
    Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. Journal of Automated Reasoning 40, 195–220 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Geser, A., Hofbauer, D., Waldmann, J.: Match-bounded string rewriting systems. Applicable Algebra in Engineering, Communication and Computing 15(3-4), 149–171 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Huet, G., Lankford, D.S.: On the uniform halting problem for term rewriting systems. Rapport Laboria 283. INRIA (1978)Google Scholar
  7. 7.
    Koprowski, A., Waldmann, J.: Arctic termination ... below zero. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 202–216. Springer, Heidelberg (2008)Google Scholar
  8. 8.
    Simon, I.: Recognizable sets with multiplicities in the tropical semiring. In: Koubek, V., Janiga, L., Chytil, M.P. (eds.) MFCS 1988. LNCS, vol. 324, pp. 107–120. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  9. 9.
    Zankl, H., Korp, M.: Modular complexity analysis via relative complexity. In: Proceedings of the 21st Conference on Rewriting Techniques and Applications (RTA). Lipics, pp. 385–400 (2010)Google Scholar
  10. 10.
    Zantema, H.: Termination of string rewriting proved automatically. Journal of Automated Reasoning 34, 105–139 (2004)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Hans Zantema
    • 1
    • 2
  • Barbara König
    • 3
  • H. J. Sander Bruggink
    • 3
  1. 1.Department of Computer ScienceTU EindhovenEindhovenThe Netherlands
  2. 2.Institute for Computing and Information SciencesRadboud University NijmegenNijmegenThe Netherlands
  3. 3.Abteilung Informatik und Angewandte KognitionswissenschaftDuisburg Essen UniversityDuisburgGermany

Personalised recommendations