Formalizing Monotone Algebras for Certification of Termination and Complexity Proofs

  • Christian Sternagel
  • René Thiemann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8560)


Monotone algebras are frequently used to generate reduction orders in automated termination and complexity proofs. To be able to certify these proofs, we formalized several kinds of interpretations in the proof assistant Isabelle/HOL. We report on our integration of matrix interpretations, arctic interpretations, and nonlinear polynomial interpretations over various domains, including the reals.


Formal Proof Proof Assistant Termination Proof Dependency Pair Derivational Complexity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press (1998)Google Scholar
  2. 2.
    Ballarin, C.: Locales: A module system for mathematical theories. J. Autom. Reasoning 52(2), 123–153 (2014), doi:10.1007/s10817-013-9284-7
  3. 3.
    Blanqui, F., Koprowski, A.: CoLoR: a Coq library on well-founded rewrite relations and its application to the automated verification of termination certificates. Math. Struct. Comp. Sci. 21(4), 827–859 (2011),, doi:10.1017/S0960129511000120
  4. 4.
    Cichon, A., Lescanne, P.: Polynomial interpretations and the complexity of algorithms. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 139–147. Springer, Heidelberg (1992),, doi:10.1007/3-540-55602-8_161
  5. 5.
    Cohen, C.: Construction of real algebraic numbers in coq. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 67–82. Springer, Heidelberg (2012),, doi:10.1007/978-3-642-32347-8_6
  6. 6.
    Contejean, E., Courtieu, P., Forest, J., Pons, O., Urbain, X.: Automated certified proofs with CIME3. In: Proc. 22nd RTA. LIPIcs, vol. 10, pp. 21–30. Schloss Dagstuhl (2011),, doi:10.4230/LIPIcs.RTA.2011.21
  7. 7.
    Courtieu, P., Gbedo, G., Pons, O.: Improved matrix interpretation. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 283–295. Springer, Heidelberg (2010),, doi:10.1007/978-3-642-11266-9_24
  8. 8.
    Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. J. Autom. Reasoning 40(2-3), 195–220 (2008),, doi:10.1007/s10817-007-9087-9
  9. 9.
    Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework: Combining techniques for automated termination proofs. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 301–331. Springer, Heidelberg (2005),, doi:10.1007/978-3-540-32275-7_21
  10. 10.
    Haftmann, F., Krauss, A., Kunčar, O., Nipkow, T.: Data refinement in Isabelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 100–115. Springer, Heidelberg (2013),, doi:10.1007/978-3-642-39634-2_10
  11. 11.
    Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In: Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp. 103–117. Springer, Heidelberg (2010),, doi:10.1007/978-3-642-12251-4_9
  12. 12.
    Hirokawa, N., Moser, G.: Automated complexity analysis based on the dependency pair method. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 364–379. Springer, Heidelberg (2008),, doi:10.1007/978-3-540-71070-7_32
  13. 13.
    Hofbauer, D.: Termination Proofs and Derivation Lengths in Term Rewriting Systems. Dissertation, Technische Universität Berlin, Germany (1991), Available as Technical Report 92-46, TU Berlin (1992)Google Scholar
  14. 14.
    Hofbauer, D., Lautemann, C.: Termination proofs and the length of derivations. In: Dershowitz, N. (ed.) RTA 1989. LNCS, vol. 355, pp. 167–177. Springer, Heidelberg (1989),, doi:10.1007/3-540-51081-8_107
  15. 15.
    Huffman, B., Kunčar, O.: Lifting and transfer: A modular design for quotients in isabelle/HOL. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 131–146. Springer, Heidelberg (2013),, doi:10.1007/978-3-319-03545-1_9
  16. 16.
    Koprowski, A., Waldmann, J.: Arctic termination … below zero. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 202–216. Springer, Heidelberg (2008),, doi:10.1007/978-3-540-70590-1_14
  17. 17.
    Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean Termination Tool 2. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 295–304. Springer, Heidelberg (2009),, doi:10.1007/978-3-642-02348-4_21
  18. 18.
    Lankford, D.: On proving term rewriting systems are Noetherian. Technical Report MTP-3, Louisiana Technical University, Ruston, LA, USA (1979)Google Scholar
  19. 19.
    Lochbihler, A.: Light-weight containers for Isabelle: Efficient, extensible, nestable. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 116–132. Springer, Heidelberg (2013),, doi:10.1007/978-3-642-39634-2_11
  20. 20.
    Lucas, S.: On the relative power of polynomials with real, rational, and integer coefficients in proofs of termination of rewriting. Appl. Algebr. Eng. Comm. 17(1), 49–73 (2006),, doi:10.1007/s00200-005-0189-5
  21. 21.
    Lucas, S.: Practical use of polynomials over the reals in proofs of termination. In: Proc. 9th PPDP, pp. 39–50. ACM (2007),, doi:10.1145/1273920.1273927
  22. 22.
    Moser, G., Schnabl, A., Waldmann, J.: Complexity analysis of term rewriting based on matrix and context dependent interpretations. In: Proc. 28th FSTTCS. LIPIcs, vol. 2, pp. 304–315. Schloss Dagstuhl (2008),, doi:10.4230/LIPIcs.FSTTCS.2008.1762
  23. 23.
    Neurauter, F., Middeldorp, A.: On the domain and dimension hierarchy of matrix interpretations. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 320–334. Springer, Heidelberg (2012),, doi:10.1007/978-3-642-28717-6_25
  24. 24.
    Neurauter, F., Middeldorp, A., Zankl, H.: Monotonicity criteria for polynomial interpretations over the naturals. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 502–517. Springer, Heidelberg (2010),, doi:10.1007/978-3-642-14203-1_42
  25. 25.
    Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002),, doi:10.1007/3-540-45949-9
  26. 26.
    Porter, B.: Cauchy’s mean theorem and the Cauchy-Schwarz inequality. Archive of Formal Proofs (March 2006),
  27. 27.
    Schnabl, A.: Derivational Complexity Analysis Revisited. PhD thesis, University of Innsbruck, Austria (2011)Google Scholar
  28. 28.
    Sternagel, C., Thiemann, R.: Certification extends termination techniques. In: Proc. 11th WST (2010), arXiv:1208.1594Google Scholar
  29. 29.
    Sternagel, C., Thiemann, R.: Executable matrix operations on matrices of arbitrary dimensions. Archive of Formal Proofs (June 2010),
  30. 30.
    Sternagel, C., Thiemann, R.: Executable multivariate polynomials. Archive of Formal Proofs (August 2010),
  31. 31.
    Sternagel, C., Thiemann, R.: Signature extensions preserve termination. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 514–528. Springer, Heidelberg (2010),, doi:10.1007/978-3-642-15205-4_39
  32. 32.
    Thiemann, R.: Formalizing bounded increase. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 245–260. Springer, Heidelberg (2013),, doi:10.1007/978-3-642-39634-2_19
  33. 33.
    Thiemann, R.: Implementing field extensions of the form \(\mathbb{Q}\sqrt{b}\). Archive of Formal Proofs (February 2014),
  34. 34.
    Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In: Proc. 22nd TPHOLs. LNCS, vol. 5674, pp. 452–468. Springer, Heidelberg (2009),
  35. 35.
    Zankl, H., Korp, M.: Modular complexity analysis via relative complexity. In: Proc. 21st RTA. LIPIcs, vol. 6, pp. 385–400. Schloss Dagstuhl (2010),, doi:10.4230/LIPIcs.RTA.2010.385
  36. 36.
    Zankl, H., Middeldorp, A.: Satisfiability of non-linear (Ir)rational arithmetic. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 481–500. Springer, Heidelberg (2010),, doi:10.1007/978-3-642-17511-4_27
  37. 37.
    Zankl, H., Thiemann, R., Middeldorp, A.: Satisfiability of non-linear arithmetic over algebraic numbers. In: Proc. SCSS. RISC-Linz Technical Report, vol. 10-10, pp. 19–24 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Christian Sternagel
    • 1
  • René Thiemann
    • 1
  1. 1.Institute of Computer ScienceUniversity of InnsbruckAustria

Personalised recommendations