Abstract Datatypes for Real Numbers in Type Theory

  • Martín Hötzel Escardó
  • Alex Simpson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8560)


We propose an abstract datatype for a closed interval of real numbers to type theory, providing a representation-independent approach to programming with real numbers. The abstract datatype requires only function types and a natural numbers type for its formulation, and so can be added to any type theory that extends Gödel’s System T. Our main result establishes that programming with the abstract datatype is equivalent in power to programming intensionally with representations of real numbers. We also consider representing arbitrary real numbers using a mantissa-exponent representation in which the mantissa is taken from the abstract interval.


Real Number Type Theory Functional Programming Proof Assistant Annual IEEE Symposium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bauer, A., Escardó, M.H., Simpson, A.K.: Comparing functional paradigms for exact real-number computation. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 488–500. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Boehm, H.J.: Constructive real interpretation of numerical programs. SIGPLAN Notices 22(7), 214–221 (1987)CrossRefGoogle Scholar
  3. 3.
    Boehm, H.J., Cartwright, R.: Exact real arithmetic: Formulating real numbers as functions. In: Turner, D. (ed.) Research Topics in Functional Programming, pp. 43–64. Addison-Wesley (1990)Google Scholar
  4. 4.
    Bove, A., Dybjer, P.: Dependent types at work. In: Bove, A., Barbosa, L.S., Pardo, A., Pinto, J.S. (eds.) LerNet 2008. LNCS, vol. 5520, pp. 57–99. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Brouwer, L.E.J.: Besitzt jede reelle Zahl eine Dezimalbruchentwicklung? Math. Ann. 83, 201–210 (1920)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Di-Gianantonio, P.: A Functional Approach to Computability on Real Numbers. PhD thesis, Università Degli Studi di Pisa, Dipartamento di Informatica (1993)Google Scholar
  7. 7.
    Di-Gianantonio, P.: Real number computability and domain theory. Information and Computation 127(1), 11–25 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Edalat, A., Escardó, M.H.: Integration in Real PCF. In: Proceedings of the Eleventh Annual IEEE Symposium on Logic In Computer Science, New Brunswick, New Jersey, USA, pp. 382–393 (1996)Google Scholar
  9. 9.
    Di Gianantonio, P., Edalat, A.: A language for differentiable functions. In: Pfenning, F. (ed.) FOSSACS 2013 (ETAPS 2013). LNCS, vol. 7794, pp. 337–352. Springer, Heidelberg (2013)Google Scholar
  10. 10.
    Escardó, M.H.: PCF extended with real numbers. Theoret. Comput. Sci. 162(1), 79–115 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Escardó, M.H., Simpson, A.: A universal characterization of the closed Euclidean interval. In: Proceedings of the 16th Annual IEEE Symposium on Logic in Computer Science, pp. 115–128. IEEE Computer Society (2001)Google Scholar
  12. 12.
    Kohlenbach, U.: Applied Proof Theory: Proof Interpretations and their Use in Mathematics. Monographs in Mathematics. Springer (2008)Google Scholar
  13. 13.
    The Coq development team. The Coq proof assistant reference manual. LogiCal Project, Version 8.0. (2004)Google Scholar
  14. 14.
    Troelstra, A.S.: Some models for intuitionistic finite type arithmetic with fan functional. J. Symbolic Logic 42(2), 194–202 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Weihrauch, K.: Computable analysis. Springer (2000)Google Scholar
  16. 16.
    Wiedmer, E.: Computing with infinite objects. Theoret. Comput. Sci. 10, 133–155 (1980)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Martín Hötzel Escardó
    • 1
  • Alex Simpson
    • 2
  1. 1.School of Computer ScienceUniversity of BirminghamUK
  2. 2.LFCS, School of InformaticsUniversity of EdinburghUK

Personalised recommendations