Mechanisms for Leveraging Models at Runtime in Self-adaptive Software

  • Amel Bennaceur
  • Robert France
  • Giordano Tamburrelli
  • Thomas Vogel
  • Pieter J. Mosterman
  • Walter Cazzola
  • Fabio M. Costa
  • Alfonso Pierantonio
  • Matthias Tichy
  • Mehmet Akşit
  • Pär Emmanuelson
  • Huang Gang
  • Nikolaos Georgantas
  • David Redlich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8378)


Modern software systems are often required to adapt their behavior at runtime in order to maintain or enhance their utility in dynamic environments. Models at runtime research aims to provide suitable abstractions, techniques, and tools to manage the complexity of adapting software systems at runtime. In this chapter, we discuss challenges associated with developing mechanisms that leverage models at runtime to support runtime software adaptation. Specifically, we discuss challenges associated with developing effective mechanisms for supervising running systems, reasoning about and planning adaptations, maintaining consistency among multiple runtime models, and maintaining fidelity of runtime models with respect to the running system and its environment. We discuss related problems and state-of-the-art mechanisms, and identify open research challenges.


Model Transformation Object Constraint Language Object Management Group Eclipse Modeling Framework Atlas Transformation Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andersson, J., Baresi, L., Bencomo, N., de Lemos, R., Gorla, A., Inverardi, P., Vogel, T.: Software Engineering Processes for Self-Adaptive Systems. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Self-Adaptive Systems. LNCS, vol. 7475, pp. 51–75. Springer, Heidelberg (2013)Google Scholar
  2. 2.
    Antkiewicz, M., Czarnecki, K., Stephan, M.: Engineering of framework-specific modeling languages. IEEE Transactions on Software Engineering 35(6), 795–824 (2009)CrossRefGoogle Scholar
  3. 3.
    Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced concepts and tools for in-place EMF model transformations. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp. 121–135. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Barbero, M., Fabro, M.D.D., Bézivin, J.: Traceability and Provenance Issues in Global Model Management. In: Proc. of 3rd ECMDA Traceability Workshop (ECMDA-TW), pp. 47–55 (2007)Google Scholar
  5. 5.
    Becker, B., Beyer, D., Giese, H., Klein, F., Schilling, D.: Symbolic invariant verification for systems with dynamic structural adaptation. In: Proceedings of the 28th International Conference on Software Engineering (ICSE), Shanghai, China. ACM (2006)Google Scholar
  6. 6.
    Becker, S.M., Herold, S., Lohmann, S., Westfechtel, B.: A graph-based algorithm for consistency maintenance in incremental and interactive integration tools. Software and System Modeling 6(3), 287–315 (2007)CrossRefGoogle Scholar
  7. 7.
    Bertoli, M., Casale, G., Serazzi, G.: The jmt simulator for performance evaluation of non-product-form queueing networks. In: Annual Simulation Symposium, pp. 3–10. IEEE Computer Society, Norfolk (2007)Google Scholar
  8. 8.
    Bertoli, M., Casale, G., Serazzi, G.: An overview of the jmt queueing network simulator. Tech. Rep. TR 2007.2, Politecnico di Milano - DEI (2007)Google Scholar
  9. 9.
    Bézivin, J., Gérard, S., Muller, P.A., Rioux, L.: MDA components: Challenges and Opportunities. In: Proc. of the 1st Intl. Workshop on Metamodelling for MDA, pp. 23–41 (2003)Google Scholar
  10. 10.
    Bézivin, J., Jouault, F., Valduriez, P.: On the Need for Megamodels. In: Proc. of the OOPSLA/GPCE Workshop on Best Practices for Model-Driven Software Development (2004)Google Scholar
  11. 11.
    Blair, G., Bencomo, N., France, R.B.: Models@run.time: Guest Editors’ Introduction. Computer 42(10), 22–27 (2009)CrossRefGoogle Scholar
  12. 12.
    Blair, G.S., Blair, L., Issarny, V., Tůma, P., Zarras, A.: The role of software architecture in constraining adaptation in component-based middleware platforms. In: Coulson, G., Sventek, J. (eds.) Middleware 2000. LNCS, vol. 1795, pp. 164–184. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Brun, Y., Di Marzo Serugendo, G., Gacek, C., Giese, H., Kienle, H., Litoiu, M., Müller, H., Pezzè, M., Shaw, M.: Engineering Self-Adaptive Systems through Feedback Loops. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Self-Adaptive Systems. LNCS, vol. 5525, pp. 48–70. Springer, Heidelberg (2009)Google Scholar
  14. 14.
    Bruneliere, H., Cabot, J., Jouault, F., Madiot, F.: Modisco: a generic and extensible framework for model driven reverse engineering. In: Proceedings of the IEEE/ACM International Conference on Automated Software Engineering, pp. 173–174. ACM (2010)Google Scholar
  15. 15.
    Calinescu, R., Grunske, L., Kwiatkowska, M.Z., Mirandola, R., Tamburrelli, G.: Dynamic qos management and optimization in service-based systems. IEEE Trans. Software Eng. 37(3), 387–409 (2011)CrossRefGoogle Scholar
  16. 16.
    Cazzola, W.: Evolution as Reflections on the Design. In: Bencomo, N., Chang, B., France, R.B., Aßmann, U. (eds.) Models@Run-Time. LNCS, vol. 8378, pp. 259–278. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  17. 17.
    Cazzola, W., Pini, S., Ghoneim, A., Saake, G.: Co-Evolving Application Code and Design Models by Exploiting Meta-Data. In: Proceedings of the 12th Annual ACM Symposium on Applied Computing (SAC 2007), Seoul, South Korea, pp. 1275–1279. ACM Press (March 2007)Google Scholar
  18. 18.
    Chauvel, F., Barais, O.: Modelling Adaptation Policies for Self-Adaptive Component Architectures. In: Proceedings of the Workshop on Model-Driven Software Adaptation (M-ADAPT 2007) at the 21st European Conference on Object-Oriented Programming (ECOOP 2007), Berlin, Germany, pp. 61–68 (2007)Google Scholar
  19. 19.
    Cheng, B.H.C., et al.: Software Engineering for Self-Adaptive Systems: A Research Roadmap. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Self-Adaptive Systems. LNCS, vol. 5525, pp. 1–26. Springer, Heidelberg (2009)Google Scholar
  20. 20.
    Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: JTL: A bidirectional and change propagating transformation language. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 183–202. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Cugola, G., Ghezzi, C., Pinto, L.S., Tamburrelli, G.: Adaptive service-oriented mobile applications: A declarative approach. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) Service Oriented Computing. LNCS, vol. 7636, pp. 607–614. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Cugola, G., Ghezzi, C., Pinto, L.S., Tamburrelli, G.: Selfmotion: A declarative approach for adaptive service-oriented mobile applications. Journal of Systems and Software (2013),
  23. 23.
    Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM Systems Journal – Model-Driven Software Development 45(3), 621–645 (2006)Google Scholar
  24. 24.
    Czarnecki, K., Foster, J.N., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.F.: Bidirectional transformations: A cross-discipline perspective. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 260–283. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Deng, Y., Sadjadi, S.M., Clarke, P.J., Zhang, C., Hristidis, V., Rangaswami, R., Prabakar, N.: A communication virtual machine. In: 30th Annual International on Computer Software and Applications Conference, COMPSAC 2006, vol. 1, pp. 521–531. IEEE (2006)Google Scholar
  26. 26.
    D’Hondt, T., De Volder, K., Mens, K., Wuyts, R.: Co-Evolution of Object-Oriented Software Design and Implementation. In: Akşit, M. (ed.) Proceedings of the International Symposium on Software Architectures and Component Technology, Twente, The Netherlands, pp. 207–224. Kluwer (January 2000)Google Scholar
  27. 27.
    Dubus, J., Merle, P.: Applying OMG D&C specification and ECA rules for autonomous distributed component-based systems. In: Kühne, T. (ed.) MoDELS 2006. LNCS, vol. 4364, pp. 242–251. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  28. 28.
    Egyed, A., Letier, E., Finkelstein, A.: Generating and evaluating choices for fixing inconsistencies in uml design models. In: 23rd IEEE/ACM International Conference on Automated Software Engineering (ASE 2008), L’Aquila, Italy, 15-19 September, pp. 99–108. IEEE (2008)Google Scholar
  29. 29.
    Engels, G., Lewerentz, C., Schäfer, W., Schürr, A., Westfechtel, B. (eds.): Nagl Festschrift. LNCS, vol. 5765. Springer, Heidelberg (2010)zbMATHGoogle Scholar
  30. 30.
    Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-time parameter adaptation. In: ICSE, pp. 111–121. IEEE (2009)Google Scholar
  31. 31.
    Favre, J.M.: Foundations of Model (Driven) (Reverse) Engineering: Models – Episode I: Stories of The Fidus Papyrus and of The Solarus. In: Language Engineering for Model-Driven Software Development. No. 04101 in Dagstuhl Seminar Proceedings, IBFI, Schloss Dagstuhl (2005)Google Scholar
  32. 32.
    Filieri, A., Ghezzi, C., Tamburrelli, G.: Run-time efficient probabilistic model checking. In: 2011 33rd International Conference on Software Engineering (ICSE), pp. 341–350 (2011)Google Scholar
  33. 33.
    Filieri, A., Ghezzi, C., Tamburrelli, G.: A formal approach to adaptive software: continuous assurance of non-functional requirements. Formal Asp. Comput. 24(2), 163–186 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Finkelstein, A.C.W., Gabbay, D., Hunter, A., Kramer, J., Nuseibeh, B.: Inconsistency handling in multiperspective specifications. IEEE Transactions on Software Engineering 20(8), 569 (1994)CrossRefGoogle Scholar
  35. 35.
    Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story diagrams: A new graph rewrite language based on the unified modeling language and java. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 296–309. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  36. 36.
    Fisher, K., Gruber, R.: Pads: a domain-specific language for processing ad hoc data. In: ACM SIGPLAN Notices, vol. 40, pp. 295–304. ACM (2005)Google Scholar
  37. 37.
    Fleurey, F., Dehlen, V., Bencomo, N., Morin, B., Jézéquel, J.-M.: Modeling and Validating Dynamic Adaptation. In: Chaudron, M.R.V. (ed.) MODELS 2008. LNCS, vol. 5421, pp. 97–108. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  38. 38.
    Fleurey, F., Solberg, A.: A Domain Specific Modeling Language Supporting Specification, Simulation and Execution of Dynamic Adaptive Systems. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 606–621. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  39. 39.
    Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., Gjorven, E.: Using Architecture Models for Runtime Adaptability. IEEE Software 23(2), 62–70 (2006)CrossRefGoogle Scholar
  40. 40.
    France, R., Rumpe, B.: Model-driven Development of Complex Software: A Research Roadmap. In: FOSE 2007: 2007 Future of Software Engineering, pp. 37–54. IEEE Computer Society, Washington, DC (2007)Google Scholar
  41. 41.
    Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., Steenkiste, P.: Rainbow: Architecture-Based Self-Adaptation with Reusable Infrastructure. Computer 37(10), 46–54 (2004)CrossRefGoogle Scholar
  42. 42.
    Garofalakis, M., Gionis, A., Rastogi, R., Seshadri, S., Shim, K.: Xtract: A system for extracting document type descriptors from xml documents. In: ACM SIGMOD Record, vol. 29, pp. 165–176. ACM (2000)Google Scholar
  43. 43.
    Georgas, J.C., Hoek, A., Taylor, R.N.: Using Architectural Models to Manage and Visualize Runtime Adaptation. Computer 42(10), 52–60 (2009)CrossRefGoogle Scholar
  44. 44.
    Ghezzi, C., Pinto, L.S., Spoletini, P., Tamburrelli, G.: Managing non-functional uncertainty via model-driven adaptivity. In: Notkin, D., Cheng, B.H.C., Pohl, K. (eds.) ICSE, pp. 33–42. IEEE/ACM (2013)Google Scholar
  45. 45.
    Giese, H., Lambers, L., Becker, B., Hildebrandt, S., Neumann, S., Vogel, T., Wätzoldt, S.: Graph Transformations for MDE, Adaptation, and Models at Runtime. In: Bernardo, M., Cortellessa, V., Pierantonio, A. (eds.) SFM 2012. LNCS, vol. 7320, pp. 137–191. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  46. 46.
    Giese, H., Wagner, R.: From model transformation to incremental bidirectional model synchronization. Software and Systems Modeling (SoSyM) 8(1) (2009)Google Scholar
  47. 47.
    Greenyer, J., Kindler, E.: Comparing relational model transformation technologies: implementing query/view/transformation with triple graph grammars. Software and System Modeling 9(1), 21–46 (2010)CrossRefGoogle Scholar
  48. 48.
    Heckel, R., Wagner, A.: Ensuring consistency of conditional graph rewriting - a constructive approach. Electr. Notes Theor. Comput. Sci. 2, 118–126 (1995)zbMATHCrossRefGoogle Scholar
  49. 49.
    Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for automatic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  50. 50.
    IBM: An architectural blueprint for autonomic computing. Tech. rep., IBM (2003)Google Scholar
  51. 51.
    Jackson, M., Zave, P.: Deriving specifications from requirements: an example. In: ICSE 1995: Proceedings of the 17th International Conference on Software Engineering, pp. 15–24. ACM, New York (1995)CrossRefGoogle Scholar
  52. 52.
    Jouault, F., Bézivin, J., Chevrel, R., Gray, J.: Experiments in Run-Time Model Extraction. In: Proceedings of 1st International Workshop on Models@run.time (2006)Google Scholar
  53. 53.
    Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  54. 54.
    Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50 (2003)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Kokar, M.M., Baclawski, K., Eracar, Y.A.: Control Theory-Based Foundations of Self-Controlling Software. Intelligent Systems and their Applications 14(3), 37–45 (1999)CrossRefGoogle Scholar
  56. 56.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic symbolic model checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002)Google Scholar
  57. 57.
    Lehmann, G., Blumendorf, M., Trollmann, F., Albayrak, S.: Meta-modeling Runtime Models. In: Dingel, J., Solberg, A. (eds.) MODELS 2010. LNCS, vol. 6627, pp. 209–223. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  58. 58.
    de Lemos, R., et al.: Software Engineering for Self-Adaptive Systems: A Second Research Roadmap. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Self-Adaptive Systems. LNCS, vol. 7475, pp. 1–32. Springer, Heidelberg (2013)Google Scholar
  59. 59.
    Mao, M., Li, J., Humphrey, M.: Cloud auto-scaling with deadline and budget constraints. In: 2010 11th IEEE/ACM International Conference on Grid Computing (GRID), pp. 41–48. IEEE (2010)Google Scholar
  60. 60.
    McKinley, P.K., Cheng, B.H.C., Ramirez, A.J., Jensen, A.C.: Applying evolutionary computation to mitigate uncertainty in dynamically-adaptive, high-assurance middleware. Journal of Internet Services and Applications, 1–8 (2011)Google Scholar
  61. 61.
    Medvidovic, N., Taylor, R.: A Classification and Comparison Framework for Software Architecture Description Languages. IEEE Transactions on Software Engineering 26(1), 70–93 (2000)CrossRefGoogle Scholar
  62. 62.
    Mens, K., Kellens, A., Pluquet, F., Wuyts, R.: Co-evolving Code and Design Using Intensional Views - A Case Study. Journal of Computer Languages, Systems and Structures 32(2), 140–156 (2006)zbMATHCrossRefGoogle Scholar
  63. 63.
    Mens, T., Van Gorp, P.: A taxonomy of model transformation. Electronic Notes in Theoretical Computer Science 152, 125–142 (2006)CrossRefGoogle Scholar
  64. 64.
    Morin, B., Fleurey, F., Bencomo, N., Jézéquel, J.-M., Solberg, A., Dehlen, V., Blair, G.S.: An Aspect-Oriented and Model-Driven Approach for Managing Dynamic Variability. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 782–796. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  65. 65.
    Mosterman, P.J., Sztipanovits, J., Engell, S.: Computer-automated multiparadigm modeling in control systems technology. IEEE Trans. Contr. Sys. Techn. – special issue on Computer Automated Multiparadigm Modeling 12(2), 223–234 (2004)CrossRefGoogle Scholar
  66. 66.
    Mosterman, P.J., Vangheluwe, H.: Computer automated multi-paradigm modeling in control system design. In: Proceedings of the IEEE International Symposium on Computer-Aided Control Systems Design (CACSD 2000), pp. 65–70 (2000)Google Scholar
  67. 67.
    Mosterman, P.J., Vangheluwe, H.: Guest editorial: Special issue on computer automated multi-paradigm modeling. ACM Trans. Model. Comput. Simul. 12(4), 249–255 (2002)CrossRefGoogle Scholar
  68. 68.
    Nentwich, C., Emmerich, W., Finkelstein, A.: Consistency management with repair actions. In: Proceedings of the 25th International Conference on Software Engineering, Portland, Oregon, USA, May 3-10, pp. 455–464. IEEE Computer Society (2003)Google Scholar
  69. 69.
    Object Management Group (OMG): Software & Systems Process Engineering Metamodel specification (SPEM) Version 2.0 (2008), OMG Adopted Specification formal/2008-04-01Google Scholar
  70. 70.
    Object Management Group (OMG): MOF 2.0 QVT Final Adopted Specification v1.1 (2011), OMG Adopted Specification formal/2011-01-01Google Scholar
  71. 71.
    Object Management Group (OMG): OMG Meta Object Facility (MOF) Core Specification, Version 2.4.1, OMG Adopted Specification formal/2011-08-07 (2011)Google Scholar
  72. 72.
    Object Management Group (OMG): OMG Object Constraint Language (OCL) Version 2.3.1, OMG Adopted Specification formal/2012-01-01 (2012)Google Scholar
  73. 73.
    OMG: Model Driven Architecture (MDA). Technical Report ORMSC/2001-07-01, OMG (July 2001)Google Scholar
  74. 74.
    Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based runtime software evolution. In: ICSE 1998: Proceedings of the 20th International Conference on Software Engineering, pp. 177–186. IEEE Computer Society, Washington, DC (1998)Google Scholar
  75. 75.
    Oreizy, P., Medvidovic, N., Taylor, R.N.: Runtime software adaptation: framework, approaches, and styles. In: ICSE Companion 2008: Companion of the 30th International Conference on Software Engineering, pp. 899–910. ACM, New York (2008)Google Scholar
  76. 76.
    Ramirez, A.J., Cheng, B.: Evolving Models at Run Time to Address Functional and Non-Functional Adaptation Requirements. In: Bencomo, N., Blair, G., France, R., Jeanneret, C., Munoz, F. (eds.) Proceedings of the 4th International Workshop on Models@run.time. CEUR Workshop Proceedings, vol. 509, pp. 31–40 (2009)Google Scholar
  77. 77.
    Rensink, A.: The GROOVE simulator: A tool for state space generation. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 479–485. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  78. 78.
    Rozenberg, G.: Handbook of Graph Grammars and Computing by Grah Transformation, vol. 1. Foundations. World Scientific (1997)Google Scholar
  79. 79.
    Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research challenges. ACM Trans. Auton. Adapt. Syst. 4(2), 1–42 (2009)CrossRefGoogle Scholar
  80. 80.
    Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  81. 81.
    Schürr, A.: Programmed graph replacement systems. In: Handbook of graph grammars and computing by graph transformation: Foundations, vol. 1, pp. 479–546. World Scientific Publishing Co., Inc., River Edge (1997)CrossRefGoogle Scholar
  82. 82.
    Sendall, S., Kozaczynski, W.: Model Transformation: The Heart and Soul of Model-Driven Software Development. IEEE Softw. 20(5), 42–45 (2003)CrossRefGoogle Scholar
  83. 83.
    Song, H., Huang, G., Chauvel, F., Xiong, Y., Hu, Z., Sun, Y., Mei, H.: Supporting runtime software architecture: A bidirectional-transformation-based approach. Journal of Systems and Software 84(5), 711–723 (2011)CrossRefGoogle Scholar
  84. 84.
    Song, H., Huang, G., Xiong, Y., Chauvel, F., Sun, Y., Mei, H.: Inferring Meta-models for Runtime System Data from the Clients of Management APIs. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part II. LNCS, vol. 6395, pp. 168–182. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  85. 85.
    Song, H., Xiong, Y., Chauvel, F., Huang, G., Hu, Z., Mei, H.: Generating Synchronization Engines between Running Systems and Their Model-Based Views. In: Ghosh, S. (ed.) MODELS 2009. LNCS, vol. 6002, pp. 140–154. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  86. 86.
    Stevens, P.: A landscape of bidirectional model transformations. In: Lämmel, R., Visser, J., Saraiva, J. (eds.) Generative and Transformational Techniques in Software Engineering II. LNCS, vol. 5235, pp. 408–424. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  87. 87.
    Stevens, P.: Bidirectional model transformations in QVT: semantic issues and open questions. Software and Systems Modeling 8 (2009)Google Scholar
  88. 88.
    Taentzer, G.: AGG: A graph transformation environment for modeling and validation of software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 446–453. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  89. 89.
    Taïani, F., Grace, P., Coulson, G., Blair, G.S.: Past and future of reflective middleware: towards a corpus-based impact analysis. In: ARM, pp. 41–46 (2008)Google Scholar
  90. 90.
    Tajalli, H., Garcia, J., Edwards, G., Medvidovic, N.: PLASMA: a plan-based layered architecture for software model-driven adaptation. In: Proceedings of the IEEE/ACM International Conference on Automated Software Engineering (ASE 2010), pp. 467–476. ACM, New York (2010)Google Scholar
  91. 91.
    Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations, Theory, and Practice. Wiley Publishing (2009)Google Scholar
  92. 92.
    Tratt, L.: Model transformations and tool integration. SOSYM 4(2), 112–122 (2005)Google Scholar
  93. 93.
    Tratt, L.: A change propagating model transformation language. Journal of Object Technology 7(3), 107–124 (2008)CrossRefGoogle Scholar
  94. 94.
    Vogel, T., Giese, H.: Adaptation and Abstract Runtime Models. In: Proceedings of the 5th ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2010), pp. 39–48. ACM (2010)Google Scholar
  95. 95.
    Vogel, T., Giese, H.: A Language for Feedback Loops in Self-Adaptive Systems: Executable Runtime Megamodels. In: Proceedings of the 7th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2012), pp. 129–138. IEEE Computer Society (2012)Google Scholar
  96. 96.
    Vogel, T., Giese, H.: Requirements and Assessment of Languages and Frameworks for Adaptation Models. In: Kienzle, J. (ed.) MODELS 2011 Workshops. LNCS, vol. 7167, pp. 167–182. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  97. 97.
    Vogel, T., Giese, H.: Model-driven engineering of self-adaptive software with eurema. ACM Trans. Auton. Adapt. Syst. 8(4), 1–18 (2014)CrossRefGoogle Scholar
  98. 98.
    Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., Becker, B.: Incremental Model Synchronization for Efficient Run-Time Monitoring. In: Ghosh, S. (ed.) MODELS 2009. LNCS, vol. 6002, pp. 124–139. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  99. 99.
    Vogel, T., Seibel, A., Giese, H.: The Role of Models and Megamodels at Runtime. In: Dingel, J., Solberg, A. (eds.) MODELS 2010. LNCS, vol. 6627, pp. 224–238. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  100. 100.
    Zarras, A.: Applying model-driven architecture to achieve distribution transparencies. Information & Software Technology (2006)Google Scholar
  101. 101.
    Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM Trans. Softw. Eng. Methodol. 6(1), 1–30 (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Amel Bennaceur
    • 1
  • Robert France
    • 2
  • Giordano Tamburrelli
    • 3
  • Thomas Vogel
    • 4
  • Pieter J. Mosterman
    • 5
  • Walter Cazzola
    • 6
  • Fabio M. Costa
    • 7
  • Alfonso Pierantonio
    • 8
  • Matthias Tichy
    • 9
  • Mehmet Akşit
    • 10
  • Pär Emmanuelson
    • 11
  • Huang Gang
    • 12
  • Nikolaos Georgantas
    • 1
  • David Redlich
    • 13
  1. 1.InriaFrance
  2. 2.Colorado State UniversityUS
  3. 3.Università della Svizzera ItalianaSwitzerland
  4. 4.Hasso Plattner Institute at the University of PotsdamGermany
  5. 5.MathWorksUS
  6. 6.Università degli Studi di MilanoItaly
  7. 7.Universidade Federal de GoiásBrazil
  8. 8.Univ. degli Studi di L’AquilaItaly
  9. 9.Chalmers, University of GothenburgSweden
  10. 10.University of TwenteNetherlands
  11. 11.Ericsson ABSweden
  12. 12.Peking UniversityChina
  13. 13.Lancaster UniversityUK

Personalised recommendations