Workshop on Logic Programming

WLP 2013: Declarative Programming and Knowledge Management pp 118-135 | Cite as

Introducing Real Variables and Integer Objective Functions to Answer Set Programming

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8439)


Answer set programming languages have been extended to support linear constraints and objective functions. However, the variables allowed in the constraints and functions are restricted to integer and Boolean domains, respectively. In this paper, we generalize the domain of linear constraints to real numbers and that of objective functions to integers. Since these extensions are based on a translation from logic programs to mixed integer programs, we compare the translation-based answer set programming approach with the native mixed integer programming approach using a number of benchmark problems.


Linear Constraint Mixed Integer Programming Real Variable Hamiltonian Cycle Integrity Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Balduccini, M.: Industrial-size scheduling with ASP+CP. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 284–296. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  2. 2.
    Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011)CrossRefGoogle Scholar
  3. 3.
    Clark, K.L.: Negation as failure. In: Logics and Databases, pp. 293–322 (1978)Google Scholar
  4. 4.
    Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The second answer set programming competition. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 637–654. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  5. 5.
    Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  6. 6.
    Gebser, M., Kaminski, R., König, A., Schaub, T.: Advances in gringo series 3. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 345–351. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  7. 7.
    Gebser, M., Ostrowski, M., Schaub, T.: Constraint answer set solving. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 235–249. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  8. 8.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R.A., Bowen, K.A. (eds.) Logic Programming, Proceedings of the Fifth International Conference and Symposium, Seattle, Washington, August 15–19, 1988, vol. 2, pp. 1070–1080. MIT Press (1988). ISBN: 0-262-61056-6Google Scholar
  9. 9.
    Goldberg, D.: What every computer scientist should know about floating-point arithmetic. ACM Comput. Surv. 23(1), 5–48 (1991)CrossRefGoogle Scholar
  10. 10.
    Grimes, D., Hebrard, E., Malapert, A.: Closing the open shop: contradicting conventional wisdom. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 400–408. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  11. 11.
    IBM: CPLEX performance tuning for linear programs.
  12. 12.
    Jaffar, J., Maher, M.J.: Constraint logic programming: a survey. J. Logic Program. 19/20, 503–581 (1994)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Liu, G., Janhunen, T., Niemelä, I.: Answer set programming via mixed integer programming. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Thirteenth International Conference, KR 2012, Rome, Italy, June 10–14, 2012, pp. 32–42. AAAI Press (2012). ISBN: 978-1-57735-560-1Google Scholar
  14. 14.
    Mellarkod, V.S., Gelfond, M., Zhang, Y.: Integrating answer set programming and constraint logic programming. AMAI 53(1–4), 251–287 (2008)MATHMathSciNetGoogle Scholar
  15. 15.
    Nguyen, M., Janhunen, T., Niemelä, I.: Translating answer-set programs into bit-vector logic. In: Tompits, H., Abreu, S., Oetsch, J., Pührer, J., Seipel, D., Umeda, M., Wolf, A. (eds.) INAP/WLP 2011. LNCS, vol. 7773, pp. 91–109. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  16. 16.
    Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. AMAI 25(3–4), 241–273 (1999)MATHGoogle Scholar
  17. 17.
    Niemelä, I.: Linear and integer programming modelling and tools. Lecture Notes for the course on Search Problems and Algorithms, Helsinki University of Technology (2008)Google Scholar
  18. 18.
    Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artif. Intell. 138(1–2), 181–234 (2002)CrossRefMATHGoogle Scholar
  19. 19.
    You, J.-H., Hou, G.: Arc-consistency + unit propagation = lookahead. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 314–328. Springer, Heidelberg (2004) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Helsinki Institute for Information Technology HIIT, Department of Information and Computer ScienceAalto UniversityAaltoFinland

Personalised recommendations