hex-Programs with Existential Quantification

  • Thomas Eiter
  • Michael FinkEmail author
  • Thomas Krennwallner
  • Christoph Redl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8439)


hex-programs extend ASP by external sources. In this paper, we present domain-specific existential quantifiers on top of hex-programs, i.e., ASP programs with external access which may introduce new values that also show up in the answer sets. Pure logical existential quantification corresponds to a specific instance of our approach. Programs with existential quantifiers may have infinite groundings in general, but for specific reasoning tasks a finite subset of the grounding can suffice. We introduce a generalized grounding algorithm for such problems, which exploits domain-specific termination criteria in order to generate a finite grounding for bounded model generation. As an application we consider query answering over existential rules. In contrast to other approaches, several extensions can be naturally integrated into our approach. We further show how terms with function symbols can be handled by hex-programs, which in fact can be seen as a specific form of existential quantification.


Answer Set Bounded Model Generation Existential Rules Grounding Algorithm Domain-specific Outcomes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aavani, A., Wu, X.N., Ternovska, E., Mitchell, D.: Grounding formulas with complex terms. In: Butz, C., Lingras, P. (eds.) Canadian AI 2011. LNCS, vol. 6657, pp. 13–25. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  2. 2.
    Alviano, M., Faber, W., Leone, N., Manna, M.: Disjunctive datalog with existential quantifiers: semantics, decidability, and complexity issues. TPLP 12(4–5), 701–718 (2012)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011)CrossRefGoogle Scholar
  4. 4.
    Calimeri, F., Cozza, S., Ianni, G.: External sources of knowledge and value invention in logic programming. Ann. Math. Artif. Intell. 50(3–4), 333–361 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Eiter, T., Fink, M., Krennwallner, T., Redl, C.: Grounding HEX-programs with expanding domains. In: Workshop on Grounding and Transformations for Theories with Variables (GTTV’13), pp. 3–15 (2013)Google Scholar
  6. 6.
    Eiter, T., Fink, M., Krennwallner, T., Redl, C.: Liberal safety for answer set programs with external sources. In: AAAI’13, pp. 267–275. AAAI Press (2013)Google Scholar
  7. 7.
    Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-order reasoning and external evaluations in answer-set programming. In: IJCAI, pp. 90–96 (2005)Google Scholar
  8. 8.
    Eiter, T., Simkus, M.: FDNC: decidable nonmonotonic disjunctive logic programs with function symbols. ACM Trans. Comput. Log. 11(2), 14:1–14:50 (2010)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggregates in answer set programming. Artif. Intell. 175(1), 278–298 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Fagin, R., Kolaitis, P., Miller, R., Popa, L.: Data exchange: semantics and query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: from theory to practice. Artif. Intell. 187, 52–89 (2012)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Gebser, M., Sabuncu, O., Schaub, T.: An incremental answer set programming based system for finite model computation. AI Commun. 24(2), 195–212 (2011)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Gener. Comput. 9(3–4), 365–386 (1991)CrossRefGoogle Scholar
  14. 14.
    Grau, B.C., Horrocks, I., Krötzsch, M., Kupke, C., Magka, D., Motik, B., Wang, Z.: Acyclicity conditions and their application to query answering in description logics. In: KR’12, pp. 243–253. AAAI Press (2012)Google Scholar
  15. 15.
    Hernich, A., Kupke, C., Lukasiewicz, T., Gottlob, G.: Well-founded semantics for extended datalog and ontological reasoning. In: PODS’13, pp. 225–236. ACM (2013)Google Scholar
  16. 16.
    Heymans, S., Nieuwenborgh, D.V., Vermeir, D.: Open answer set programming with guarded programs. ACM Trans. Comput. Logic 9(4), 26:1–26:53 (2008)CrossRefGoogle Scholar
  17. 17.
    Leone, N., Manna, M., Terracina, G., Veltri, P.: Efficiently computable datalog\(^{\exists }\) programs. In: KR’12, pp. 13–23. AAAI Press (2012)Google Scholar
  18. 18.
    Magka, D., Krötzsch, M., Horrocks, I.: Computing stable models for nonmonotonic existential rules. In: IJCAI’13, pp. 1031–1038. AAAI Press (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Thomas Eiter
    • 1
  • Michael Fink
    • 1
    Email author
  • Thomas Krennwallner
    • 1
  • Christoph Redl
    • 1
  1. 1.Institut für InformationssystemeTechnische Universität WienViennaAustria

Personalised recommendations