Advertisement

From LTL to Deterministic Automata: A Safraless Compositional Approach

  • Javier Esparza
  • Jan Křetínský
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8559)

Abstract

We present a new algorithm to construct a (generalized) deterministic Rabin automaton for an LTL formula φ. The automaton is the product of a master automaton and an array of slave automata, one for each G-subformula of φ. The slave automaton for G ψ is in charge of recognizing whether FG ψ holds. As opposed to standard determinization procedures, the states of all our automata have a clear logical structure, which allows for various optimizations. Our construction subsumes former algorithms for fragments of LTL. Experimental results show improvement in the sizes of the resulting automata compared to existing methods.

Keywords

Linear Temporal Logic Parallel Composition Acceptance Condition Linear Temporal Logic Formula Deterministic Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [BBDL+13]
    Babiak, T., Badie, T., Duret-Lutz, A., Křetínský, M., Strejček, J.: Compositional approach to suspension and other improvements to LTL translation. In: Bartocci, E., Ramakrishnan, C.R. (eds.) SPIN 2013. LNCS, vol. 7976, pp. 81–98. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. [BBKS13]
    Babiak, T., Blahoudek, F., Křetínský, M., Strejček, J.: Effective translation of LTL to deterministic Rabin automata: Beyond the (F,G)-fragment. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 24–39. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. [BK08]
    Baier, C., Katoen, J.-P.: Principles of model checking. MIT Press (2008)Google Scholar
  4. [BKRS12]
    Babiak, T., Křetínský, M., Řehák, V., Strejček, J.: LTL to Büchi automata translation: Fast and more deterministic. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 95–109. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. [BKS13]
    Blahoudek, F., Křetínský, M., Strejček, J.: Comparison of LTL to deterministic Rabin automata translators. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 164–172. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. [CGK13]
    Chatterjee, K., Gaiser, A., Křetínský, J.: Automata with generalized Rabin pairs for probabilistic model checking and LTL synthesis. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 559–575. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. [Cou99]
    Couvreur, J.-M.: On-the-fly verification of linear temporal logic. In: World Congress on Formal Methods, pp. 253–271 (1999)Google Scholar
  8. [DAC99]
    Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state verification. In: ICSE, pp. 411–420 (1999)Google Scholar
  9. [Dam92]
    Dam, M.: Fixed points of Büchi automata. In: FSTTCS, pp. 39–50 (1992)Google Scholar
  10. [DGV99]
    Daniele, M., Giunchiglia, F., Vardi, M.Y.: Improved automata generation for linear temporal logic. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 249–260. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. [DL13]
    Duret-Lutz, A.: Manipulating LTL formulas using spot 1.0. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 442–445. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. [EH00]
    Etessami, K., Holzmann, G.J.: Optimizing Büchi automata. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 153–167. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. [EK14]
    Esparza, J., Křetínský, J.: From LTL to deterministic automata: A safraless compositional approach. Technical Report abs/1402.3388, arXiv.org (2014)Google Scholar
  14. [Fri03]
    Fritz, C.: Constructing Büchi automata from linear temporal logic using simulation relations for alternating büchi automata. In: Ibarra, O.H., Dang, Z. (eds.) CIAA 2003. LNCS, vol. 2759, pp. 35–48. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. [GKE12]
    Gaiser, A., Křetínský, J., Esparza, J.: Rabinizer: Small deterministic automata for LTL(F,G). In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 72–76. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. [GL02]
    Giannakopoulou, D., Lerda, F.: From states to transitions: Improving translation of LTL formulae to Büchi automata. In: FORTE, pp. 308–326 (2002)Google Scholar
  17. [GO01]
    Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001); Tool accessible at http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/
  18. [KB06]
    Klein, J., Baier, C.: Experiments with deterministic ω-automata for formulas of linear temporal logic. Theor. Comput. Sci. 363(2), 182–195 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  19. [KB07]
    Klein, J., Baier, C.: On-the-fly stuttering in the construction of deterministic ω-automata. In: Holub, J., Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 51–61. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. [KE12]
    Křetínský, J., Esparza, J.: Deterministic automata for the (F,G)-fragment of LTL. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 7–22. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. [Kle]
    Klein, J.: ltl2dstar - LTL to deterministic Streett and Rabin automata, http://www.ltl2dstar.de/
  22. [KLG13]
    Křetínský, J., Garza, R.L.: Rabinizer 2: Small deterministic automata for LTL∖GU. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 446–450. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  23. [KNP11]
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. [Pel07]
    Pelánek, R.: Beem: Benchmarks for explicit model checkers. In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. [Pit06]
    Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity automata. In: LICS, pp. 255–264 (2006)Google Scholar
  26. [Saf88]
    Safra, S.: On the complexity of ω-automata. In: FOCS, pp. 319–327. IEEE Computer Society (1988)Google Scholar
  27. [SB00]
    Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  28. [Sch09]
    Schewe, S.: Tighter bounds for the determinisation of Büchi automata. In: FOSSACS, pp. 167–181 (2009)Google Scholar
  29. [spe]
    Spec Patterns: Property pattern mappings for LTL, http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml
  30. [Var88]
    Vardi, M.Y.: A temporal fixpoint calculus. In: POPL, pp. 250–259 (1988)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Javier Esparza
    • 1
    • 2
  • Jan Křetínský
    • 1
    • 2
  1. 1.Institut für InformatikTechnische Universität MünchenGermany
  2. 2.ISTAustria

Personalised recommendations