A Swarm Robotics Approach to Task Allocation under Soft Deadlines and Negligible Switching Costs

  • Yara Khaluf
  • Mauro Birattari
  • Heiko Hamann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8575)

Abstract

Developing swarm robotics systems for real-time applications is a challenging mission. Task deadlines are among the kind of constraints which characterize a large set of real applications. This paper focuses on devising and analyzing a task allocation strategy that allows swarm robotics systems to execute tasks characterized by soft deadlines and to minimize the costs associated with missing the task deadlines.

Keywords

Soft deadlines Time-constrained tasks Swarm robotics Multi-agent systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acebo, E.D., de la Rosa, J.: Introducing bar systems: A class of swarm intelligence optimization algorithms. In: AISB Convention Communication, Interaction and Social Intelligence, Aberdeen, Scotland, pp. 18–23 (2008)Google Scholar
  2. 2.
    Agassounon, W., Martinoli, A.: A macroscopic model of an aggregation experiment using embodied agents in groups of time-varying sizes. In: Proceedings of the IEEE Conference on System, Man and Cybernetics (SMC), Hammamet, Tunisia, pp. 250–255 (2002)Google Scholar
  3. 3.
    Beal, J.: Superdiffusive dispersion and mixing of swarms with reactive Levy walks. In: IEEE 7th International Conference on Self-Adaptive and Self-Organizing Systems, SASO 2013, pp. 141–148 (2013)Google Scholar
  4. 4.
    Campo, A., Dorigo, M.: Efficient multi-foraging in swarm robotics. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 696–705. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Danchin, E., Giraldeau, L., Cézilly, F., et al.: Behavioural ecology. Oxford University Press, Oxford (2008)Google Scholar
  6. 6.
    Guerrero, J., Oliver, G.: Multi-robot task allocation method for heterogeneous tasks with priorities. In: Distributed Autonomous Robotic Systems 6, pp. 181–190. Springer, Berlin (2007)CrossRefGoogle Scholar
  7. 7.
    Guerrero, J., Oliver, G.: Auction and swarm multi-robot task allocation algorithms in real time scenarios. In: Yasuda, T. (ed.) Multi-Robot Systems, Trends and Development, pp. 437–456. InTech (2011)Google Scholar
  8. 8.
    Hamann, H.: Space-Time Continuous Models of Swarm Robotics Systems: Supporting Global-to-Local Programming. PhD thesis, University of Karlsruhe, Germany (November 2008)Google Scholar
  9. 9.
    Hamann, H., Wörn, H.: An analytical and spatial model of foraging in a swarm of robots. In: Şahin, E., Spears, W.M., Winfield, A.F.T. (eds.) Swarm Robotics Ws. LNCS, vol. 4433, pp. 43–55. Springer, Heidelberg (2007)Google Scholar
  10. 10.
    Huang, Z., Otis, G.: Inspection and feeding of larvae by worker honey bees (hymenoptera: Apidae): Effect of starvation and food quantity. Journal of Insect Behavior 4(3), 305–317 (1991)CrossRefGoogle Scholar
  11. 11.
    Jones, E., Dias, M., Stentz, A.: Learning-enhanced market-based task allocation for oversubscribed domains. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, pp. 2308–2313 (2007)Google Scholar
  12. 12.
    Khaluf, Y.: Task Allocation in Robot Swarms for Time-Constrained Tasks. PhD thesis, University of Paderborn, Germany (2014)Google Scholar
  13. 13.
    Labella, T., Dorigo, M., Deneubourg, J.: Division of labor in a group of robots inspired by ants’ foraging behavior. ACM Transactions on Autonomous and Adaptive Systems 1(1), 4–25 (2006)CrossRefGoogle Scholar
  14. 14.
    Lerman, K., Galstyan, A.: Mathematical model of foraging in a group of robots: Effect of interference. Autonomous Robots 13(2), 127–141 (2002)CrossRefMATHGoogle Scholar
  15. 15.
    Lerman, K., Galstyan, A., Martinoli, A., Ijspeert, A.: A macroscopic analytical model of collaboration in distributed robotic systems. Artificial Life 7(4), 375–393 (2001)CrossRefGoogle Scholar
  16. 16.
    Lerman, K., Martinoli, A., Galstyan, A.: A review of probabilistic macroscopic models for swarm robotic systems. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics 2004. LNCS, vol. 3342, pp. 143–152. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N., Ferrante, E., Caro, G., Ducatelle, F., Birattari, M., Gambardella, L., Dorigo, M.: ARGoS: A modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence 6, 271–295 (2012)CrossRefGoogle Scholar
  18. 18.
    Ross, S.: Applied probability models with optimization applications. Dover Publications Inc., New York (1992)Google Scholar
  19. 19.
    Schneider, J., Apfelbaum, D., Bagnell, D., Simmons, R.: Learning opportunity costs in multi-robot market based planners. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, ICRA 2005, pp. 1151–1156 (2005)Google Scholar
  20. 20.
    Stankovic, J.: Deadline scheduling for real-time systems: EDF and related algorithms. Springer (1998)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Yara Khaluf
    • 1
  • Mauro Birattari
    • 2
  • Heiko Hamann
    • 1
  1. 1.Department of Computer ScienceUniversity of PaderbornPaderbornGermany
  2. 2.IRIDIAUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations