Context-Aware Distance Semantics for Inconsistent Database Systems

  • Anna Zamansky
  • Ofer Arieli
  • Kostas Stefanidis
Part of the Communications in Computer and Information Science book series (CCIS, volume 443)


Many approaches for consistency restoration in database systems have to deal with the problem of an exponential blowup in the number of possible repairs. For this reason, recent approaches advocate more flexible and fine grained policies based on the reasoner’s preference. In this paper we take a further step towards more personalized inconsistency management by incorporating ideas from context-aware systems. The outcome is a general distance-based approach to inconsistency maintenance in database systems, controlled by context-aware considerations.


Aggregation Function Atomic Formula Integrity Constraint Distance Semantic Context Setting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abowd, G.D., Dey, A.K.: Towards a better understanding of context and context-awareness. In: Gellersen, H.-W. (ed.) HUC 1999. LNCS, vol. 1707, pp. 304–307. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Arenas, M., Bertossi, L., Chomicki, J.: Answer sets for consistent query answering in inconsistent databases. TPLP 3(4-5), 393–424 (2003)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Arieli, O.: Distance-based paraconsistent logics. International Journal of Approximate Reasoning 48(3), 766–783 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Arieli, O.: Reasoning with prioritized information by iterative aggregation of distance functions. Journal of Applied Logic 6(4), 589–605 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Arieli, O., Denecker, M., Bruynooghe, M.: Distance semantics for database repair. Annals of Mathematics and Artificial Intelligence 50(3-4), 389–415 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. International Journal of Ad Hoc and Ubiquitous Computing 2(4), 263–277 (2007)CrossRefGoogle Scholar
  7. 7.
    Bertossi, L.: Consistent query answering in databases. SIGMOD Record 35(2), 68–76 (2006)CrossRefGoogle Scholar
  8. 8.
    Bolchini, C., Curino, C., Orsi, G., Quintarelli, E., Rossato, R., Schreiber, F.A., Tanca, L.: And what can context do for data? Comm. ACM 52(11), 136–140 (2009)CrossRefGoogle Scholar
  9. 9.
    Brézillon, P.: Context in artificial intelligence: I. A survey of the literature. Computers and Artificial Intelligence 18(4) (1999)Google Scholar
  10. 10.
    Chomicki, J.: Consistent query answering: Five easy pieces. In: Schwentick, T., Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 1–17. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Dey, A.: Understanding and using context. Personal and Ubiquitous Computing 5(1), 4–7 (2001)CrossRefGoogle Scholar
  12. 12.
    Eiter, T., Mannila, H.: Distance measure for point sets and their computation. Acta Informatica 34, 109–133 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Ekbia, H.R., Maguitman, A.G.: Context and relevance: A pragmatic approach. In: Akman, V., Bouquet, P., Thomason, R.H., Young, R.A. (eds.) CONTEXT 2001. LNCS (LNAI), vol. 2116, pp. 156–169. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Henricksen, K., Indulska, J.: Developing context-aware pervasive computing applications: Models and approach. Pervasive and Mobile Comput. 2, 37–64 (2006)CrossRefGoogle Scholar
  15. 15.
    Konieczny, S., Lang, J., Marquis, P.: DA2 merging operators. Artificial Intelligence 157(1-2), 49–79 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Konieczny, S., Pino Pérez, R.: Merging information under constraints: A logical framework. Logic and Computation 12(5), 773–808 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Pitoura, E., Stefanidis, K., Vassiliadis, P.: Contextual database preferences. IEEE Data Engeneering Bulletin 34(2), 19–26 (2011)Google Scholar
  18. 18.
    Staworko, S., Chomicki, J., Marcinkowski, J.: Prioritized repairing and consistent query answering in relational databases. Ann. Math. Artif. Intel. 64, 209–246 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Stefanidis, K., Pitoura, E.: Fast contextual preference scoring of database tuples. In: Proceedings of EDBT 2008, pp. 344–355. ACM (2008)Google Scholar
  20. 20.
    Stefanidis, K., Pitoura, E., Vassiliadis, P.: Managing contextual preferences. Information Systems 36(8), 1158–1180 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Anna Zamansky
    • 1
  • Ofer Arieli
    • 2
  • Kostas Stefanidis
    • 3
  1. 1.Department of Information SystemsUniversity of HaifaIsrael
  2. 2.School of Computer ScienceThe Academic College of Tel-AvivIsrael
  3. 3.Institute of Computer Science, Foundation for Research and TechnologyHellas (FORTH)Greece

Personalised recommendations