Advertisement

Variable-Range Approximate Systems Induced by Many-Valued L-Relations

  • Aleksandrs Eļkins
  • Sang-Eon Han
  • Alexander Šostak
Part of the Communications in Computer and Information Science book series (CCIS, volume 444)

Abstract

The concept of a many-valued L-relation is introduced and studied. Many-valued L-relations are used to induce variable-range quasi-approximate systems defined on the lines of the paper (A. Šostak, Towards the theory of approximate systems: variable-range categories. Proceedings of ICTA2011, Cambridge Univ. Publ. (2012) 265–284.) Such variable-range (quasi-)approximate systems can be realized as special families of L-fuzzy rough sets indexed by elements of a complete lattice.

Keywords

Variable-range (quasi-)approximate system many-valued L-relation L-fuzzy rough set 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Birkhoff, G.: Lattice Theory. AMS, Providence (1995)Google Scholar
  2. 2.
    Bodenhofer, U.: Ordering of fuzzy sets based on fuzzy orderings. I: The basic approach. Mathware Soft Comput. 15, 201–218 (2008)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Bodenhofer, U.: Ordering of fuzzy sets based on fuzzy orderings. II: Generalizations. Mathware Soft Comput. 15, 219–249 (2008)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Brown, L.M., Ertürk, R., Dost, Ş.: Ditopological texture spaces and fuzzy topology, I. Basic concepts. Fuzzy Sets and Syst. 110, 227–236 (2000)CrossRefzbMATHGoogle Scholar
  5. 5.
    Brown, L.M., Ertürk, R., Dost, Ş.: Ditopological texture spaces and fuzzy topology, II. Topological considerations. Fuzzy Sets and Syst. 147, 171–199 (2004)CrossRefzbMATHGoogle Scholar
  6. 6.
    Chang, C.L.: Fuzzy topological spaces. J. Math. Anal. Appl. 24, 182–190 (1968)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. Internat. J. General Syst. 17, 191–209 (1990)CrossRefzbMATHGoogle Scholar
  8. 8.
    Gierz, G., Hoffman, K.H., Keimel, K., Lawson, J.D., Mislove, M.W., Scott, D.S.: Continuous Lattices and Domains. Cambridge University Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar
  9. 9.
    Goguen, J.A.: The fuzzy Tychonoff theorem. J. Math. Anal. Appl. 43, 734–742 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Eļkins, A., Šostak, A.: On some categories of approximate systems generated by L-relations. In: 3rd Rough Sets Theory Workshop, Milan, Italy, pp. 14–19 (2011)Google Scholar
  11. 11.
    Sang-Eon, H., Soo, K.I., Šostak, A.: On approximate-type systems generated by L-relations. Inf. Sci. (to appear)Google Scholar
  12. 12.
    Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Acad. Publ. (2000)Google Scholar
  13. 13.
    Pawlak, Z.: Rough sets. Intern. J. of Computer and Inform. Sci. 11, 341–356 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Radzikowska, A.M., Kerre, E.E.: A comparative study of fuzzy rough sets. Fuzzy Sets and Syst. 126, 137–155 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Rosenthal, K.I.: Quantales and Their Applications. Pirman Research Notes in Mathematics 234. Longman Scientific & Technical (1990)Google Scholar
  16. 16.
    Rodabaugh, S.E.: Powers-set operator based foundations for point-set lattice-theoretic (poslat) fuzzy set theories and topologies. Quaest. Math. 20, 463–530 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Rodabaugh, S.E.: Power-set operator foundations for poslat fuzzy set theories and topologies. In: Höhle, U., Rodabaugh, S.E. (eds.) Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, pp. 91–116. Kluwer Acad. Publ. (1999)Google Scholar
  18. 18.
    Schweitzer, B., Sklar, A.: Probabilistic Metric Spaces. North Holland, New York (1983)Google Scholar
  19. 19.
    Šostak, A.: On approximative operators and approximative systems. In: Proceedings of Congress of the International Fuzzy System Association (IFSA 2009), Lisbon, Portugal, July 20-24, pp. 1061–1066 (2009)Google Scholar
  20. 20.
    Šostak, A.: Towards the theory of M-approximate systems: Fundamentals and examples. Fuzzy Sets and Syst. 161, 2440–2461 (2010)CrossRefzbMATHGoogle Scholar
  21. 21.
    Šostak, A.: Towards the theory of approximate systems: variable range categories. In: Proceedings of ICTA 2011, Islamabad, Pakistan, pp. 265–284. Cambridge University Publ. (2012)Google Scholar
  22. 22.
    Valverde, L.: On the structure of F-indistinguishability operators. Fuzzy Sets and Syst. 17, 313–328 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Yao, Y.Y.: A comparative study of fuzzy sets and rough sets. Inf. Sci. 109, 227–242 (1998)CrossRefzbMATHGoogle Scholar
  24. 24.
    Yao, Y.Y.: On generalizing Pawlak approximation operators. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 298–307. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  25. 25.
    Zadeh, L.: Similarity relations and fuzzy orderings. Inf. Sci. 3, 177–200 (1971)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Aleksandrs Eļkins
    • 1
  • Sang-Eon Han
    • 3
  • Alexander Šostak
    • 1
    • 2
  1. 1.Department of MathematicsUniversity of LatviaRigaLatvia
  2. 2.Institute of Mathematics and CSUniversity of LatiaRigaLatvia
  3. 3.Faculty of Liberal Education, Institute of Pure and Applied MathematicsChonbuk National UniversityJeonju-CityRepublic of Korea

Personalised recommendations