Advertisement

Minimal Partial Languages and Automata

  • Francine Blanchet-Sadri
  • Kira Goldner
  • Aidan Shackleton
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8587)

Abstract

Partial words are sequences of characters from an alphabet in which some positions may be marked with a “hole” symbol, ⋄. We can create a ⋄-substitution mapping this symbol to a subset of the alphabet, so that applying such a substitution to a partial word results in a set of full words (ones without holes). This setup allows us to compress regular languages into smaller partial languages. Deterministic finite automata for such partial languages, referred to as ⋄-DFAs, employ a limited non-determinism that can allow them to have lower state complexity than the minimal DFAs for the corresponding full languages. Our paper focuses on algorithms for the construction of minimal partial languages, associated with some ⋄-substitution, as well as approximation algorithms for the construction of minimal ⋄-DFAs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balkanski, E., Blanchet-Sadri, F., Kilgore, M., Wyatt, B.J.: Partial word DFAs. In: Konstantinidis, S. (ed.) CIAA 2013. LNCS, vol. 7982, pp. 36–47. Springer, Heidelberg (2013)Google Scholar
  2. 2.
    Björklund, H., Martens, W.: The tractability frontier for NFA minimization. Journal of Computer and System Sciences 78, 198–210 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Blanchet-Sadri, F.: Algorithmic Combinatorics on Partial Words. Chapman & Hall/CRC Press, Boca Raton (2008)zbMATHGoogle Scholar
  4. 4.
    Dassow, J., Manea, F., Mercaş, R.: Regular languages of partial words. Information Sciences 268, 290–304 (2014)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Groz, B., Maneth, S., Staworko, S.: Deterministic regular expressions in linear time. In: 31th ACM Symposium on Principles of Database Systems, PODS 2012, pp. 49–60 (2012)Google Scholar
  6. 6.
    Holzer, M., Jakobi, S., Wendlandt, M.: On the computational complexity of partial word automata problems. IFIG Research Report 1404, Institut für Informatik, Justus-Liebig-Universität Gießen, Arndtstr. 2, D-35392 Gießen, Germany (May 2014)Google Scholar
  7. 7.
    Hopcroft, J.E.: An n log n algorithm for minimizing states in a finite automaton. Tech. rep., DTIC Document (1971)Google Scholar
  8. 8.
    Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM Journal on Computing 22, 1117–1141 (1993)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Francine Blanchet-Sadri
    • 1
  • Kira Goldner
    • 2
  • Aidan Shackleton
    • 3
  1. 1.Department of Computer ScienceUniversity of North CarolinaGreensboroUSA
  2. 2.Department of MathematicsOberlin CollegeOberlinUSA
  3. 3.Department of Computer ScienceSwarthmore CollegeSwarthmoreUSA

Personalised recommendations