The Power of Regularity-Preserving Multi Bottom-up Tree Transducers

  • Andreas Maletti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8587)


The expressive power of regularity-preserving multi bottom-up tree transducers (mbot) is investigated. These mbot have very attractive theoretical and algorithmic properties. However, their expressive power is not well understood. It is proved that despite the restriction their power still exceeds that of composition chains of linear extended top-down tree transducers with regular look-ahead (xtop R), which are a natural super-class of stsg. In particular, topicalization can be modeled by such mbot, whereas composition chains of xtop R cannot implement it. However, the inverse of topicalization cannot be implemented by any mbot. An interesting, promising, and widely applicable proof technique is used to prove those statements.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnold, A., Dauchet, M.: Morphismes et bimorphismes d’arbres. Theoret. Comput. Sci. 20(1), 33–93 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Braune, F., Seemann, N., Quernheim, D., Maletti, A.: Shallow local multi bottom-up tree transducers in statistical machine translation. In: Proc. 51st ACL, pp. 811–821. Association for Computational Linguistics (2013)Google Scholar
  3. 3.
    Chiang, D.: An introduction to synchronous grammars. In: Proc. 44th ACL. Association for Computational Linguistics, part of a tutorial given with Kevin Knight (2006)Google Scholar
  4. 4.
    Chiang, D.: Hierarchical phrase-based translation. Comput. Linguist. 33(2), 201–228 (2007)CrossRefzbMATHGoogle Scholar
  5. 5.
    Eisner, J.: Learning non-isomorphic tree mappings for machine translation. In: Proc. 41st ACL, pp. 205–208. Association for Computational Linguistics (2003)Google Scholar
  6. 6.
    Engelfriet, J., Lilin, E., Maletti, A.: Composition and decomposition of extended multi bottom-up tree transducers. Acta Inform. 46(8), 561–590 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Engelfriet, J., Rozenberg, G., Slutzki, G.: Tree transducers, L systems, and two-way machines. J. Comput. System Sci. 20(2), 150–202 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Fülöp, Z., Maletti, A.: Composition closure of ε-free linear extended top-down tree transducers. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 239–251. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Fülöp, Z., Maletti, A.: Linking theorems for tree transducers (2014) (manuscript)Google Scholar
  10. 10.
    Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)Google Scholar
  11. 11.
    Gécseg, F., Steinby, M.: Tree languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, ch. 1, pp. 1–68. Springer (1997)Google Scholar
  12. 12.
    Gildea, D.: On the string translations produced by multi bottom-up tree transducers. Comput. Linguist. 38(3), 673–693 (2012)CrossRefMathSciNetGoogle Scholar
  13. 13.
    de Gispert, A., Iglesias, G., Blackwood, G.W., Banga, E.R., Byrne, W.: Hierarchical phrase-based translation with weighted finite-state transducers and shallow-n grammars. Comput. Linguist. 36(3), 505–533 (2010)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Knight, K., Graehl, J.: An overview of probabilistic tree transducers for natural language processing. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp. 1–24. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Koehn, P.: Statistical Machine Translation. Cambridge University Press (2010)Google Scholar
  16. 16.
    Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., Herbst, E.: Moses: Open source toolkit for statistical machine translation. In: Proc. 45th ACL, pp. 177–180. Association for Computational Linguistics (2007)Google Scholar
  17. 17.
    Lilin, E.: Propriétés de clôture d’une extension de transducteurs d’arbres déterministes. In: Astesiano, E., Böhm, C. (eds.) CAAP 1981. LNCS, vol. 112, pp. 280–289. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  18. 18.
    Maletti, A.: Why synchronous tree substitution grammars? In: Proc. HLT-NAACL 2010, pp. 876–884. Association for Computational Linguistics (2010)Google Scholar
  19. 19.
    Maletti, A.: How to train your multi bottom-up tree transducer. In: Proc. 49th ACL, pp. 825–834. Association for Computational Linguistics (2011)Google Scholar
  20. 20.
    Maletti, A.: Tree transformations and dependencies. In: Kanazawa, M., Kornai, A., Kracht, M., Seki, H. (eds.) MOL 12. LNCS (LNAI), vol. 6878, pp. 1–20. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Maletti, A., Graehl, J., Hopkins, M., Knight, K.: The power of extended top-down tree transducers. SIAM J. Comput. 39(2), 410–430 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    May, J., Knight, K., Vogler, H.: Efficient inference through cascades of weighted tree transducers. In: Proc. 48th ACL, pp. 1058–1066. Association for Computational Linguistics (2010)Google Scholar
  23. 23.
    Och, F.J., Ney, H.: The alignment template approach to statistical machine translation. Comput. Linguist. 30(4), 417–449 (2004)CrossRefzbMATHGoogle Scholar
  24. 24.
    Shieber, S.M., Schabes, Y.: Synchronous tree-adjoining grammars. In: Proc. 13th CoLing, vol. 3, pp. 253–258 (1990)Google Scholar
  25. 25.
    Zhang, M., Jiang, H., Aw, A., Li, H., Tan, C.L., Li, S.: A tree sequence alignment-based tree-to-tree translation model. In: Proc. 46th ACL, pp. 559–567. Association for Computational Linguistics (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Andreas Maletti
    • 1
  1. 1.Institute of Computer ScienceUniversität LeipzigLeipzigGermany

Personalised recommendations