Advertisement

Bounded Prefix-Suffix Duplication

  • Marius Dumitran
  • Javier Gil
  • Florin Manea
  • Victor Mitrana
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8587)

Abstract

We consider a restricted variant of the prefix-suffix duplication operation, called bounded prefix-suffix duplication. It consists in the iterative duplication of a prefix or suffix, whose length is bounded by a constant, of a given word. We give a sufficient condition for the closure under bounded prefix-suffix duplication of a class of languages. Consequently, the class of regular languages is closed under bounded prefix-suffix duplication; furthermore, we propose an algorithm deciding whether a regular language is a finite k-prefix-suffix duplication language. An efficient algorithm solving the membership problem for the k-prefix-suffix duplication of a language is also presented. Finally, we define the k-prefix-suffix duplication distance between two words, extend it to languages and show how it can be computed for regular languages.

Keywords

Formal Language Regular Language Primitive Root Membership Problem Restricted Variant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bovet, D.P., Varricchio, S.: On the regularity of languages on a binary alphabet generated by copying systems. Inform. Proc. Letters 44(3), 119–123 (1992)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Crochemore, M.: An optimal algorithm for computing the repetitions in a word. Inf. Process. Lett. 12(5), 244–250 (1981)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Dassow, J., Mitrana, V., Păun, G.: On the regularity of duplication closure. Bull. European Assoc. Theor. Comput. Sci. 68, 133–136 (1999)Google Scholar
  4. 4.
    Ehrenfeucht, A., Rozenberg, G.: On the separating power of EOL systems. RAIRO Inform. Theor. 17(1), 13–22 (1983)MATHMathSciNetGoogle Scholar
  5. 5.
    Frazier, M., David Page Jr., C.: Prefix grammars: an alternative characterization of the regular languages. Inf. Process. Lett. 2, 67–71 (1994)CrossRefGoogle Scholar
  6. 6.
    Garcia Lopez, J., Manea, F., Mitrana, V.: Prefix-suffix duplication. J. Comput. Syst. Sci. (in press) doi:10.1016/j.jcss.2014.02.011Google Scholar
  7. 7.
    Ginsburg, S.: Algebraic and automata-theoretic properties of formal languages. North-Holland Pub. Co. (1975)Google Scholar
  8. 8.
    Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and computational biology. Cambridge University Press, New York (1997)CrossRefMATHGoogle Scholar
  9. 9.
    Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction. J. ACM 53(6), 918–936 (2006)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Leupold, P.: Reducing repetitions. In: Prague Stringology Conf., pp. 225–236 (2009)Google Scholar
  11. 11.
    Papadimitriou, C.: Computational Complexity. Addison-Wesley (1994)Google Scholar
  12. 12.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. I–III. Springer, Berlin (1997)MATHGoogle Scholar
  13. 13.
    Searls, D.B.: The computational linguistics of biological sequences. In: Artificial Intelligence and Molecular Biology, pp. 47–120. MIT Press, Cambridge (1993)Google Scholar
  14. 14.
    Wang, M.-W.: On the irregularity of the duplication closure. Bull. European Assoc. Theor. Comput. Sci. 70, 162–163 (2000)MATHGoogle Scholar
  15. 15.
    Knuth, D.: The Art of Computer Programming, 3rd edn. Fundamental Algorithms, vol. 1, pp. 238–243. Addison-Wesley (1997), Section 2.2.1: Stacks, Queues, and Deques, ISBN 0-201-89683-4Google Scholar
  16. 16.
    Knuth, D., Morris, J.H., Pratt, V.: Fast pattern matching in strings. SIAM J. Comput. 6(2), 323–350 (1977)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Marius Dumitran
    • 1
  • Javier Gil
    • 2
  • Florin Manea
    • 3
  • Victor Mitrana
    • 2
  1. 1.Faculty of Mathematics and Computer ScienceUniversity of BucharestBucharestRomania
  2. 2.Department of Organization and Structure of InformationPolytechnic University of MadridMadridSpain
  3. 3.Department of Computer ScienceChristian-Albrechts University of KielKielGermany

Personalised recommendations