Interspecific Competition in Arabidopsis thaliana: A Knowledge Gap Is Starting to Close

  • Maik Bartelheimer
  • Christoph Schmid
  • Joana Storf
  • Katharina Hell
  • Sibylle Bauer
Part of the Progress in Botany book series (BOTANY, volume 76)


The model species Arabidopsis thaliana offers an interesting ecological background as a non-mycorrhizal annual species and it can be analysed by outstanding molecular tools. However, its interspecific interactions are scarcely analysed, especially its competitive effect, which is found to be strong despite the species’ small size. A. thaliana’s competitive response has received more attention during the last few years. Mechanisms were found to be multi-faceted and to involve resource competition for shifting limiting resources, impacts of environmental factors including environmental stress, perception of neighbours as well as responses to allelopathy and neighbour-associated mycorrhiza. Most mechanisms underlying A. thaliana interspecific interactions still require clarification and offer research perspectives both for plant molecular biology and plant ecology.


  1. Aarssen LW, Schamp B, Pither J (2006) Why are there so many small plants? Implications for species coexistence. J Ecol 94:569–580CrossRefGoogle Scholar
  2. Abhilasha D, Quintana N, Vivanco JM, Joshi J (2008) Do allelopathic compounds in invasive Solidago canadensis s.l. restrain the native European flora? J Ecol 96:933–1001CrossRefGoogle Scholar
  3. Al-Shehbaz IA, O’Kane SL Jr (2002) Taxonomy and phylogeny of Arabidopsis (Brassicaceae). Arabidopsis Book 1:e0001, American Society of Plant BiologistsPubMedCrossRefPubMedCentralGoogle Scholar
  4. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796CrossRefGoogle Scholar
  5. Attard A, Gourgues M, Callemeyn-Torre N, Keller H (2010) The immediate activation of defense responses in Arabidopsis roots is not sufficient to prevent Phytophthora parasitica infection. New Phytol 187:449–460PubMedCrossRefGoogle Scholar
  6. Badri DV, De-la-Peña C, Lei Z, Manter DK, Chaparro JM, Guimarães RL, Sumner LW, Vivanco JM (2012) Root secreted metabolites and proteins are involved in the early events of plant-plant recognition prior to competition. PLoS One 7:e46640PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bauer S (2010) Experimentell-ökologische Untersuchungen zur Bedeutung der Aluminiumtoxizität für die Konkurrenzkraft von Pflanzenarten aus Sandökosystemen. Bachelor thesis, University of RegensburgGoogle Scholar
  8. Biedrzycki ML, Jilany TA, Dudley SA, Bais HP (2010) Root exudates mediate kin recognition in plants. Commun Integr Biol 3:28–35PubMedCrossRefPubMedCentralGoogle Scholar
  9. Biedrzycki ML, Venkatachalam L, Bais HP (2011) Transcriptome analysis of Arabidopsis thaliana plants in response to kin and stranger recognition. Plant Signal Behav 6:1515–1524PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bonser SP, Ladd B (2011) The evolution of competitive strategies in annual plants. Plant Ecol 212:1441–1449CrossRefGoogle Scholar
  11. Bossdorf O, Shuja Z, Banta JA (2009) Genotype and maternal environment affect belowground interactions between Arabidopsis thaliana and its competitors. OIKOS 118:1541–1551CrossRefGoogle Scholar
  12. Brachi B, Aimé C, Glorieux C, Roux F (2012) Adaptive value of phenological traits in stressful environments: predictions based on seed production and laboratory natural selection. PLoS One 7:e32069PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bulgarelli D, Rott M, Schlaeppi K, van Theemat EVL, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting microbiota. Nature 488:91–95PubMedCrossRefGoogle Scholar
  14. Bush SM, Krysan PJ (2010) iTILLING: a personalized approach to the identification of induced mutations in Arabidopsis. Plant Physiol 154:25–35PubMedCrossRefPubMedCentralGoogle Scholar
  15. Caffaro MM, Vivanco JM, Gutierrez-Boem FH, Rubio G (2011) The effect of root exudates on root architecture in Arabidopsis thaliana. Plant Growth Regul 64:241–249CrossRefGoogle Scholar
  16. Caffaro MM, Vivanco JM, Botto J, Rubio G (2013) Root architecture of Arabidopsis is affected by competition with neighbouring plants. Plant Growth Regul 70:141–147CrossRefGoogle Scholar
  17. Cheng Z, Woody ZO, Glick RB, McConkey JB (2010) Characterization of plant-bacterial interactions using proteomic approaches. Curr Proteomics 7:244–257CrossRefGoogle Scholar
  18. Fitter AH, Williamson L, Linkohr B, Leyser O (2002) Root system architecture determines fitness in an Arabidopsis mutant in competition for immobile phosphate ions but not for nitrate ions. Proc R Soc Lond 269:2017–2022CrossRefGoogle Scholar
  19. Gidman E, Goodacre R, Emmett B, Smith AR, Gwynn-Jones D (2003) Investigating plant-plant interference by metabolic fingerprinting. Phytochemistry 63:705–710PubMedCrossRefGoogle Scholar
  20. Goldberg DE (1996) Competitive ability: definitions, contingency and correlated traits. Philos Trans R Soc Lond B 351:1377–1385CrossRefGoogle Scholar
  21. Goldberg DE, Fleetwood L (1987) Competitive effect and response in four annual plants. J Ecol 75:1131–1143CrossRefGoogle Scholar
  22. Grime JP, Hodgson JG, Hunt R (2007) Comparative plant biology—a functional approach to common British species. Castlepoint, ColvendGoogle Scholar
  23. Heil M (2011) Nectar: generation, regulation and ecological functions. Trends Plant Sci 16:191–200PubMedCrossRefGoogle Scholar
  24. Hell C (2014) Differenzierung hydrologischer Nischen bei Vertretern der Familie der Brassicaceen. Exam thesis, University of RegensburgGoogle Scholar
  25. Hovick SM, Gümüşer ED, Whitney KD (2012) Community dominance patterns, not colonizer genetic diversity, drive colonization success in a test using grassland species. Plant Ecol 213:1365–1380CrossRefGoogle Scholar
  26. Kav NN, Srivastava S, Yajima W, Sharma N (2007) Application of proteomics to investigate plant-microbe interactions. Curr Proteomics 4:28–43CrossRefGoogle Scholar
  27. Koornneef M, Alonso-Blanco C, Vreugdenhil D (2004) Naturally occurring genetic variation in Arabidopsis thaliana. Annu Rev Plant Biol 55:141–172PubMedCrossRefGoogle Scholar
  28. Küster H, Vieweg MF, Manthey K, Baier MC, Hohnjec N, Perlick AM (2007) Identification and expression regulation of symbiotically activated legume genes. Phytochemistry 68:8–18PubMedCrossRefGoogle Scholar
  29. Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M, Karthikeyan AS, Lee CH, Nelson WD, Ploetz L, Singh S, Wensel A, Huala E (2012) The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40:D1202–D1210PubMedCrossRefPubMedCentralGoogle Scholar
  30. Lau JA, Shaw RG, Reich PB, Tiffin P (2010) Species interactions in a changing environment: elevated CO2 alters the ecological and potential evolutionary consequences of competition. Evol Ecol Res 12:435–455Google Scholar
  31. MacArthur R, Levins R (1967) The limiting similarity, convergence, and divergence of coexisting species. Am Nat 101:377–385CrossRefGoogle Scholar
  32. Macel M, Van Dam NM, Keurentjes JJB (2010) Metabolomics: the chemistry between ecology and genetics. Mol Ecol Resour 10:583–593PubMedCrossRefGoogle Scholar
  33. Markham JH, Chanway CP (1996) Measuring plant neighbour effects. Funct Ecol 10:548–549Google Scholar
  34. Masclaux F, Bruessow F, Schweizer F, Gouhier-Darimont C, Keller L, Reymond P (2012) Transcriptome analysis of intraspecific competition in Arabidopsis thaliana reveals organ-specific signatures related to nutrient acquisition and general stress response pathways. BMC Plant Biol 12:227PubMedCrossRefPubMedCentralGoogle Scholar
  35. McCullum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biotechnol 18:455–457CrossRefGoogle Scholar
  36. Mitchell-Olds T (2001) Arabidopsis thaliana and its wild relatives: a model system for ecology and evolution. Trends Ecol Evol 16:693–700CrossRefGoogle Scholar
  37. Müller B, Bartelheimer M (2013) Interspecific competition in Arabidopsis thaliana: root hairs are important for competitive effect, but not for competitive response. Plant Soil 371:167–177CrossRefGoogle Scholar
  38. Oberdorfer E (2001) Pflanzensoziologische Exkursionsflora für Deutschland und angrenzende Gebiete. Ulmer, StuttgartGoogle Scholar
  39. Pedersen HA, Kudsk P, Fiehn O, Fomsgaard IS (2013) The response of Arabidopsis to co-cultivation with clover investigating plant-plant interactions with metabolomics. In: Beck JJ, Coats RJ, Duke SO, Koivunen ME (eds) Pest management with natural products. American Chemical Society, Washington, DC, pp 189–201CrossRefGoogle Scholar
  40. Peškan‐Berghöfer T, Shahollari B, Giong PH, Hehl S, Markert C, Blanke V, Kost G, Varma A, Oelmüller R (2004) Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant–microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane. Physiol Plant 122:465–477CrossRefGoogle Scholar
  41. Pott R (1995) Die Pflanzengesellschaften Deutschlands. Ulmer, StuttgartGoogle Scholar
  42. Qin B, Lau JA, Kopshever J, Callaway RM, McGray H, Perry LG, Weir TL, Paschke MW, Hierro JL, Yoder J, Vivanco JM, Strauss S (2007) No evidence for root-mediated allelopathy in Centaurea solstitialis, a species in a commonly allelopathic genus. Biol Invasions 9:897–907CrossRefGoogle Scholar
  43. Ramadan A, Muroi A, Arimura G-i (2011) Herbivore-induced maize volatiles serve as priming cues for resistance against post-attack by the specialist armyworm Mythimna separata. J Plant Interact 6:155–158CrossRefGoogle Scholar
  44. Rudrappa T, Bonsall J, Gallagher JL, Seliskar DM, Bais HP (2007) Root-secreted allelochemicals in the noxious weed Phragmites australis deploys a reactive oxygen species response and microtubule assembly disruption to execute rhizotoxicity. J Chem Ecol 33:1898–1918PubMedCrossRefGoogle Scholar
  45. Schmid C, Bauer S, Müller B, Bartelheimer M (2013) Belowground neighbor perception in Arabidopsis thaliana studied by transcriptome analysis: roots of Hieracium pilosella cause biotic stress. Front Plant Sci 4:296PubMedCrossRefPubMedCentralGoogle Scholar
  46. Sherameti I, Tripathi S, Varma A, Oelmüller R (2008) The root-colonizing endophyte Piriformospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves. Mol Plant Microbe Interact 21:799–807PubMedCrossRefGoogle Scholar
  47. Stein RJ, Waters BM (2012) Use of natural variation reveals core genes in the transcriptome of iron-deficient Arabidopsis thaliana roots. J Exp Bot 63:1039–1055PubMedCrossRefPubMedCentralGoogle Scholar
  48. Storf J (2014) Die Rolle des hydrotropischen Wurzelwachstums für die Konkurrenzfähigkeit von Arabidopsis thaliana. Exam thesis, University of RegensburgGoogle Scholar
  49. Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton, NJGoogle Scholar
  50. Tomita-Yokotani K, Kato T, Masud Parvez M, Mori Y, Goto N, Hasegawa K (2003) Approach of allelopathy study with Arabidopsis thaliana (L.) Hevnh. and Neurospora crassa. Weed Biol Manage 3:93–97CrossRefGoogle Scholar
  51. Tosti G, Thorup-Kristensen K (2010) Using coloured roots to study root interaction and competition in intercropped legumes and non-legumes. J Plant Ecol 3:191–199CrossRefGoogle Scholar
  52. Tutin G, Heywood VH, Burges NA, Valentine DH, Moore DM (1993) Flora Europaea. Cambridge University Press, Cambridge, UKGoogle Scholar
  53. Veiga RSL, Faccio A, Genre A, Pieterse CMJ, Bonfante P, van der Heijden MGA (2013) Arbuscular mycorrhizal fungi reduce growth and infect roots of the non-host plant Arabidopsis thaliana. Plant Cell Environ 36:1926–1937PubMedGoogle Scholar
  54. Weigelt A, Schumacher J, Walther T, Bartelheimer M, Steinlein T, Beyschlag W (2007) Identifying mechanisms of competition in multi-species communities. J Ecol 95:53–64CrossRefGoogle Scholar
  55. Wilson JB, Peet RK, Dengler J, Pärtel M (2012) Plant species richness: the world records. J Veg Sci 23:796–802CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Maik Bartelheimer
    • 1
  • Christoph Schmid
    • 1
  • Joana Storf
    • 1
  • Katharina Hell
    • 1
  • Sibylle Bauer
    • 1
  1. 1.Institute of Botany, Faculty of Biology and Preclinical MedicineUniversity of RegensburgRegensburgGermany

Personalised recommendations