Advertisement

Uniaxial Shear Strain as a Mechanism to Increase Spin Lifetime in Thin Film of a SOI-Based Silicon Spin FETs

  • Dmitri OsintsevEmail author
  • Viktor Sverdlov
  • Siegfried Selberherr
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

In this chapter we investigate spin relaxation in thin silicon films. We employ a k·p based approach to investigate surface roughness and phonon induced momentum and spin relaxation matrix elements. We show that the spin relaxation matrix elements strongly decrease with shear strain increased. In order to meet computational requirements with actual resources needed for relaxation time calculations, we demonstrate a way to find the subband wave function from the k·p model analytically. We consider the impact of the surface roughness and phonons on transport and spin characteristics in ultra-thin SOI MOSFET devices. We show that the regions in the momentum space responsible for strong spin relaxation can be efficiently removed by applying uniaxial shear strain. The spin lifetime in strained films can be improved by orders of magnitude.

Keywords

Shear Strain Spin Relaxation Acoustic Phonon Silicon Film Thin Silicon Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work is supported by the European Research Council through the grant #247056 MOSILSPIN. The computational results have been achieved using the Vienna Scientific Cluster (VSC).

References

  1. 1.
    Sugahara, S., Nitta, J.: Spin transistor electronics: an overview and outlook. Proc. IEEE 98(12), 2124–2154 (2010)CrossRefGoogle Scholar
  2. 2.
    Datta, S., Das, B.: Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665 (1990)Google Scholar
  3. 3.
    Li, J., Appelbaum, I.: Modeling spin transport in electrostatically-gated lateral-channel silicon devices: role of interfacial spin relaxation. Phys. Rev. B 84, 165318 (2011)CrossRefGoogle Scholar
  4. 4.
    Li, P., Dery, H.: Spin-orbit symmetries of conduction electrons in silicon. Phys. Rev. Lett. 107, 107203 (2011)CrossRefGoogle Scholar
  5. 5.
    Huang, B., Monsma, D.J., Appelbaum, I.: Coherent spin transport through a 350 Micron thick silicon wafer. Phys. Rev. Lett. 99, 177209 (2007)CrossRefGoogle Scholar
  6. 6.
    Dash, S.P., Sharma, S., Patel, R.S., de Jong, M.P., Jansen, R.: Electrical creation of spin polarization in silicon at room temperature. Nature 462, 491–494 (2009)CrossRefGoogle Scholar
  7. 7.
    Li, C.H., Van’t Erve, O.M.J., Jonker, B.T.: Electrical injection and detection of spin accumulation in silicon at 500 K with magnetic metal/silicon dioxide contacts. Nat. Commun. 2, 245 (2011)CrossRefGoogle Scholar
  8. 8.
    Song, Y., Dery, H.: Analysis of phonon-induced spin relaxation processes in silicon. Phys. Rev. B 86, 085201 (2012)CrossRefGoogle Scholar
  9. 9.
    Bir, G.L., Pikus, G.E.: Symmetry and strain-induced effects in semiconductors. Wiley, New York (1974)Google Scholar
  10. 10.
    Sverdlov, V.: Strain-induced effects in advanced MOSFETs. Springer, Wien (2011)Google Scholar
  11. 11.
    Cheng, J.L., Wu, M.W., Fabian, J.: Theory of the spin relaxation of conduction electrons in silicon. Phys. Rev. Lett. 104, 016601 (2010)CrossRefGoogle Scholar
  12. 12.
    Friesen, M., Chutia, S., Tahan, C., Coppersmith, S.N.: Valley splitting theory of SiGe/Si/SiGe quantum wells. Phys. Rev. B 75, 115318 (2007)CrossRefGoogle Scholar
  13. 13.
    Fischetti, M.V., et al.: Six-band k·p calculation of hole mobility in silicon inversion layers: dependence on surface orientation, strain, and silicon thickness. J. Appl. Phys. 94, 1079 (2003)CrossRefGoogle Scholar
  14. 14.
    Fischetti, M.V., Laux, S.E.: Monte Carlo study of electron transport in silicon inversion layers. Phys. Rev. B 48(4), 2244–2274 (1993)CrossRefGoogle Scholar
  15. 15.
    Jin, S., Fischetti, M.V., Tang, T.: Modeling of electron mobility in gated silicon nanowires at room temperature: surface roughness scattering, dielectric scattering, and band nonparabolicity. J. Appl. Phys. 102, 083715 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Dmitri Osintsev
    • 1
    Email author
  • Viktor Sverdlov
    • 1
  • Siegfried Selberherr
    • 1
  1. 1.Institute for MicroelectronicsTU WienWienAustria

Personalised recommendations