Advertisement

A New Approach to Economic Production Quantity Problems with Fuzzy Parameters and Inventory Constraint

  • József Mezei
  • Kaj-Mikael Björk
Part of the Communications in Computer and Information Science book series (CCIS, volume 442)

Abstract

In this paper, we will develop a new multi-item economic production quantity model with limited storage space. This new model will then be extended to allow for fuzzy demand and solved numerically with a non-linear programming solver for two cases: in the first case the optimization problem will be defuzzified with the signed distance measure and in the second case, the storage constraint needs to be fulfilled, only to a certain degree of possibility. Both cases are solved and illustrated with an example.

Keywords

Economic Production Quantity Triangular fuzzy numbers Inventory constraint Signed distance Chance constrained optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Björk, K.-M.: The economic production quantity problem with a finite production rate and fuzzy cycle time. In: Proceedings of the 41th Annual Hawaii International Conference on System Sciences (HICSS 2008), pp. 68–68. IEEE (2008)Google Scholar
  2. 2.
    Björk, K.-M.: A Multi-item Fuzzy Economic Production Quantity Problem with a Finite Production Rate. Int. J. Prod. Econ. 135, 702–707 (2012)Google Scholar
  3. 3.
    Björk, K.-M., Carlsson, C.: The Outcome of Imprecise Lead Times on the Distributors. In: Proceedings of the 38th Annual Hawaii International Conference on System Sciences (HICSS 2005), pp. 81–90. IEEE (2005)Google Scholar
  4. 4.
    Björk, K.-M., Carlsson, C.: The Effect of Flexible Lead Times on a Paper Producer. Int. J. Prod. Econ. 107, 139–150 (2007)CrossRefGoogle Scholar
  5. 5.
    Carlsson, C., Fullér, R.: Soft computing and the Bullwhip effect. Econ. Comp. 2(3), 1–26 (1999)Google Scholar
  6. 6.
    Chang, H.-C.: An application of fuzzy sets theory to the EOQ model with imperfect quality items. Comput. Oper. Res. 31, 2079–2092 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Charnes, A., Cooper, W.W.: Chance-constrained programming. Manage. Sci. 6, 73–79 (1959)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Harris, F.W.: How many parts to make at once. Mag. Manage. 10, 135–136 (1913)Google Scholar
  9. 9.
    Liberatore, M.J.: The EOQ model under stochastic lead time. Oper. Res. 27, 391–396 (1979)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Liu, B., Iwamura, K.: Chance constrained programming with fuzzy parameters. Fuzzy Set. Syst. 94, 227–237 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Ouyang, L.-Y., Wu, K.-S.: A minimax distribution free procedure for mixed inventory model with variable lead time. Int. J. Prod. Econ. 56, 511–516 (1998)CrossRefGoogle Scholar
  12. 12.
    Ouyang, L.-Y., Yao, J.-S.: A minimax distribution free procedure for mixed inventory model involving variable lead time with fuzzy demand. Comp. Oper. Res. 29, 471–487 (2002)zbMATHCrossRefGoogle Scholar
  13. 13.
    Salameh, M.K., Jaber, M.Y.: Economic production quantity model for items with imperfect quality. Int. J. Prod. Econ. 64, 59–64 (2000)CrossRefGoogle Scholar
  14. 14.
    Sanni, S.S., Chukwu, W.I.E.: An Economic order quantity model for Items with Three-parameter Weibull distribution Deterioration, Ramp-type Demand and Shortages. Appl. Math. Model. 37, 9698–9706 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Taleizadeh, A.A., Nematollahi, M.: An inventory control problem for deteriorating items with back-ordering and financial considerations. Appl. Math. Model. 38, 93–109 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Yao, J.S., Wu, K.: Ranking fuzzy numbers based on decomposition principle and signed distance. Fuzzy Set. Syst. 116, 275–288 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Zadeh, L.A.: Fuzzy Sets. Inform. Control 8, 338–353 (1965)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Zadeh, L.A.: Outline of a new Approach to the Analysis of Complex Systems and Decision Processes. IEEE T. Syst. Man Cy. SMC-3, 28–44 (1973)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Set. Syst. 1, 3–28 (1978)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • József Mezei
    • 1
  • Kaj-Mikael Björk
    • 1
    • 2
  1. 1.IAMSRÅbo Akademi UniversityTurku
  2. 2.Arcada University of Applied SciencesHelsinkiFinland

Personalised recommendations