Resolution in Linguistic First Order Logic Based on Linear Symmetrical Hedge Algebra

  • Thi-Minh-Tam Nguyen
  • Viet-Trung Vu
  • The-Vinh Doan
  • Duc-Khanh Tran
Part of the Communications in Computer and Information Science book series (CCIS, volume 442)

Abstract

This paper focuses on resolution in linguistic first order logic with truth value taken from linear symmetrical hedge algebra. We build the basic components of linguistic first order logic, including syntax and semantics. We present a resolution principle for our logic to resolve on two clauses having converse linguistic truth values. Since linguistic information is uncertain, inference in our linguistic logic is approximate. Therefore, we introduce the concept of reliability in order to capture the natural approximation of the resolution inference rule.

Keywords

Linear Symmetrical Hedge Algebra Linguistic Truth Value Linguistic First Order Logic Resolution Automated Reasoning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chang, C.-L., Lee, R.C.-T.: Symbolic Logic and Mechanical Theorem Proving, 1st edn. Academic Press, Inc., Orlando (1997)Google Scholar
  2. 2.
    Ebrahim, R.: Fuzzy logic programming. Fuzzy Sets and Systems 117(2), 215–230 (2001)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Esteva, F., Godo, L., Noguera, C.: A logical approach to fuzzy truth hedges. Information Sciences 232, 366–385 (2013)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Ho, N.C., Wechler, W.: Extended hedge algebras and their application to fuzzy logic. Fuzzy Sets and Systems 52(3), 259 (1992)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Háek, P.: On very true. Fuzzy Sets and Systems 124(3), 329 (2001)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Klement, E.P.: Some mathematical aspects of fuzzy sets: triangular norms, fuzzy logics, and generalized measures. Fuzzy Sets Syst. 90(2), 133–140 (1997)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Le, V.H., Liu, F., Tran, D.K.: Fuzzy linguistic logic programming and its applications. Theory Pract. Log. Program. 9(3), 309–341 (2009)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Lee, R.C.T.: Fuzzy logic and the resolution principle. J. ACM 19(1), 109–119 (1972)CrossRefMATHGoogle Scholar
  9. 9.
    Mondal, B., Raha, S.: Approximate reasoning in fuzzy resolution. In: 2012 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS), pp. 1–6 (August 2012)Google Scholar
  10. 10.
    Nguyen, C.H., Wechler, W.: Hedge Algebras: An Algebraic Approach in Struture of Sets of Linguistic Truth Values. Fuzzy Sets and Syst. 35, 281–293 (1990)Google Scholar
  11. 11.
    Nguyen, T.-M.-T., Vu, V.-T., Doan, T.-V., Tran, D.-K.: Resolution in linguistic propositional logic based on linear symmetrical hedge algebra. In: Huynh, V.N., Denoeux, T., Tran, D.H., Le, A.C., Pham, B.S. (eds.) KSE 2013, Part I. AISC, vol. 244, pp. 337–350. Springer, Heidelberg (2014)Google Scholar
  12. 12.
    Phuong, L.A., Khang, T.D.: A deductive method in linguistic reasoning. In: 2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering (URKE), pp. 137–140 (2012)Google Scholar
  13. 13.
    Phuong, L.A., Khang, T.D.: Linguistic reasoning based on generalized modus ponens with linguistic modifiers and hedge moving rules. In: 2012 International Conference on Fuzzy Theory and it’s Applications (iFUZZY), pp. 82–86 (2012)Google Scholar
  14. 14.
    Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12(1), 23–41 (1965)CrossRefMATHGoogle Scholar
  15. 15.
    Shen, Z., Ding, L., Mukaidono, M.: Fuzzy resolution principle. In: Proceedings of the Eighteenth International Symposium on Multiple-Valued Logic, pp. 210–215 (1988)Google Scholar
  16. 16.
    Smutná-Hliněná, D., Vojtáš, P.: Graded many-valued resolution with aggregation. Fuzzy Sets and Systems 143(1), 157–168 (2004)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Tran, D.-K., Vu, V.-T., Doan, T.-V., Nguyen, M.-T.: Fuzzy linguistic propositional logic based on refined hedge algebra. In: 2013 IEEE International Conference on Fuzzy Systems (FUZZ), pp. 1–8 (2013)Google Scholar
  18. 18.
    Vojtás, P.: Fuzzy logic programming. Fuzzy Sets and Systems 124(3), 361–370 (2001)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Vychodil, V.: Truth-depressing hedges and bl-logic. Fuzzy Sets and Systems 157(15), 2074 (2006)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Weigert, T.J., Tsai, J.-P., Liu, X.: Fuzzy operator logic and fuzzy resolution. J. Autom. Reasoning 10(1), 59–78 (1993)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Thi-Minh-Tam Nguyen
    • 1
  • Viet-Trung Vu
    • 2
  • The-Vinh Doan
    • 2
  • Duc-Khanh Tran
    • 3
  1. 1.Vinh UniversityVietnam
  2. 2.Hanoi University of Science and TechnologyVietnam
  3. 3.Vietnamese German UniversityVietnam

Personalised recommendations