Towards Personalized Multilingual Information Access - Exploring the Browsing and Search Behavior of Multilingual Users

  • Ben Steichen
  • M. Rami Ghorab
  • Alexander O’Connor
  • Séamus Lawless
  • Vincent Wade
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8538)


The shift from the originally English-language-dominated web towards a truly global world wide web has generated a pressing need to develop novel solutions that address multilingual user diversity. In particular, many web users today are polyglots, i.e. they are proficient in more than one language. However, little is known about the browsing and search habits of such users, and even less about how to best assist their multilingual behaviors through appropriate systems and tools. In order to gain a better understanding, this paper presents a survey of 385 polyglot web users, focusing specifically on the relationship between multiple language proficiency and browsing/search language choice. Results from the survey indicate that polyglot users make significant use of multiple languages during their daily browsing and searching, and that contextual factors such as language proficiency, usage purpose, and topic domain have a significant influence on their language choice and frequency. The paper provides a detailed analysis regarding each of these factors, and offers insights about how to support multilingual users through novel Personalized Multilingual Information Access systems.


Personalization Multilingual Information Access User Study 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vallet, D., Cantador, I., Jose, J.M.: Personalizing web search with folksonomy-based user and document profiles. In: Gurrin, C., He, Y., Kazai, G., Kruschwitz, U., Little, S., Roelleke, T., Rüger, S., van Rijsbergen, K. (eds.) ECIR 2010. LNCS, vol. 5993, pp. 420–431. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Brusilovsky, P., Millán, E.: User models for adaptive hypermedia and adaptive educational systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 3–53. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Billsus, D., Pazzani, M.J.: Adaptive News Access. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 550–570. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Gauch, S., Speretta, M., Chandramouli, A., Micarelli, A.: User profiles for personalized information access. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 54–89. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Ghorab, M.R., Zhou, D., O’Connor, A., Wade, V.: Personalised Information Retrieval: survey and classification. User Model. User-Adapt. Interact. 23, 381–443 (2013)Google Scholar
  6. 6.
    Steichen, B., Ashman, H., Wade, V.: A comparative survey of Personalised Information Retrieval and Adaptive Hypermedia techniques. Inf. Process. Manag. 48, 698–724 (2012)Google Scholar
  7. 7.
    Nie, J.-Y.: Cross-Language Information Retrieval. Morgan and Claypool Publishers (2010)Google Scholar
  8. 8.
    Peters, C., Sheridan, P.: Multilingual information access. In: Agosti, M., Crestani, F., Pasi, G. (eds.) ESSIR 2000. LNCS, vol. 1980, pp. 51–80. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Gao, W., Niu, C., Nie, J.-Y., Zhou, M., Hu, J., Wong, K.-F., Hon, H.-W.: Cross-lingual query suggestion using query logs of different languages. In: Proc. 30th Int. Conf. on Research and Dev. in Information Retrieval (SIGIR), pp. 463–470 (2007)Google Scholar
  10. 10.
    Cao, G., Gao, J., Nie, J.-Y., Bai, J.: Extending query translation to cross-language query expansion with markov chain models. In: Proceedings of the Sixteenth ACM Conf. on Information and Knowledge Management. pp. 351–360 (2007)Google Scholar
  11. 11.
    Magdy, W., Jones, G.J.F.: An efficient method for using machine translation technologies in cross-language patent search. In: Proceedings of the 20th ACM Int. Conf. on Information and Knowledge Management. pp. 1925–1928 (2011)Google Scholar
  12. 12.
    Amato, G., Cigarrán, J., Gonzalo, J., Peters, C., Savino, P.: MultiMatch – Multilin-gual/Multimedia Access to Cultural Heritage. Research and Advanced Technology for Digital Libraries, pp. 505–508 (2007)Google Scholar
  13. 13.
    Petrelli, D., Levin, S., Beaulieu, M., Sanderson, M.: Which user interaction for cross-language information retrieval? Design issues and reflections. J. Am. Soc. Inf. Sci. Technol. 57, 709–722 (2006)CrossRefGoogle Scholar
  14. 14.
    Berendt, B., Kralisch, A.: A user-centric approach to identifying best deployment strategies for language tools: the impact of content and access language on Web user behaviour and attitudes. Inf. Retr. 12, 380–399 (2009)CrossRefGoogle Scholar
  15. 15.
    Kralisch, A., Berendt, B.: Language-sensitive search behaviour and the role of domain knowledge. New Rev. Hypermedia Multimed. 11, 221–246 (2005)CrossRefGoogle Scholar
  16. 16.
    Clough, P., Eleta, I.: Investigating Language Skills and Field of Knowledge on Multilin-gual Information Access in Digital Libraries. International Journal of Digital Library Systems (IJDLS) 1, 89–103 (2010)CrossRefGoogle Scholar
  17. 17.
    Davies, M., Fleiss, J.L.: Measuring Agreement for Multinomial Data. Biometrics 38, 1047 (1982)CrossRefzbMATHGoogle Scholar
  18. 18.
    Geertzen, J.: Inter-Rater Agreement with multiple raters and variables, (retrieved January 31, 2014)

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ben Steichen
    • 1
  • M. Rami Ghorab
    • 2
  • Alexander O’Connor
    • 2
  • Séamus Lawless
    • 2
  • Vincent Wade
    • 2
  1. 1.Department of Computer ScienceUniversity of British ColumbiaVancouverCanada
  2. 2.Centre for Next Generation Localisation, Knowledge & Data Engineering Group, School of Computer Science & StatisticsTrinity College DublinIreland

Personalised recommendations