Te,Te,Hi,Hi: Eye Gaze Sequence Analysis for Informing User-Adaptive Information Visualizations

  • Ben Steichen
  • Michael M. A. Wu
  • Dereck Toker
  • Cristina Conati
  • Giuseppe Carenini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8538)

Abstract

Information visualization systems have traditionally followed a one-size-fits-all paradigm with respect to their users, i.e., their design is seldom personalized to the specific characteristics of users (e.g. perceptual abilities) or their tasks (e.g. task difficulty). In view of creating information visualization systems that can adapt to each individual user and task, this paper provides an analysis of user eye gaze data aimed at identifying behavioral patterns that are specific to certain user and task groups. In particular, the paper leverages the sequential nature of user eye gaze patterns through differential sequence mining, and successfully identifies a number of pattern differences that could be leveraged by adaptive information visualization systems in order to automatically identify (and consequently adapt to) different user and task characteristics.

Keywords

Information Visualization Eye Tracking Pattern Analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Conati, C., Maclaren, H.: Exploring the role of individual differences in information visualization. In: Proc. of the Working Conf. on Advanced Visual Interfaces, pp. 199–206 (2008)Google Scholar
  2. 2.
    Velez, M.C., Silver, D., Tremaine, M.: Understanding visualization through spatial ability differences. In: IEEE Visualization, VIS 2005, pp. 511–518 (2005)Google Scholar
  3. 3.
    Ziemkiewicz, C., Crouser, R.J., Yauilla, A.R., Su, S.L., Ribarsky, W., Chang, R.: How locus of control influences compatibility with visualization style. In: 2011 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 81–90 (2011)Google Scholar
  4. 4.
    Dillon, A.: Spatial-semantics: How users derive shape from information space. J. Am. Soc. Inf. Sci. 51, 521–528 (2000)CrossRefGoogle Scholar
  5. 5.
    Toker, D., Conati, C., Steichen, B., Carenini, G.: Individual user characteristics and information visualization: connecting the dots through eye tracking. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 295–304 (2013)Google Scholar
  6. 6.
    Goldberg, J., Helfman, J.: Eye tracking for visualization evaluation: reading values on linear versus radial graphs. Inf. Vis. 10, 182–195 (2011)CrossRefGoogle Scholar
  7. 7.
    Steichen, B., Carenini, G., Conati, C.: User-adaptive information visualization: using eye gaze data to infer visualization tasks and user cognitive abilities. In: Proceedings of the 2013 International Conference on Intelligent User Interfaces, pp. 317–328 (2013)Google Scholar
  8. 8.
    Toker, D., Conati, C., Carenini, G., Haraty, M.: Towards adaptive information visualization: On the influence of user characteristics. In: Masthoff, J., Mobasher, B., Desmarais, M.C., Nkambou, R. (eds.) UMAP 2012. LNCS, vol. 7379, pp. 274–285. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Green, T.M., Fisher, B.: Towards the Personal Equation of Interaction: The impact of personality factors on visual analytics interface interaction. In: 2010 IEEE Symposium on Visual Analytics Science and Technology (VAST), pp. 203–210 (2010)Google Scholar
  10. 10.
    Grawemeyer, B.: Evaluation of ERST – an external representation selection tutor. In: Barker-Plummer, D., Cox, R., Swoboda, N. (eds.) Diagrams 2006. LNCS (LNAI), vol. 4045, pp. 154–167. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Gotz, D., Wen, Z.: Behavior-driven visualization recommendation. In: Proceedings of the 14th International Conference on Intelligent User Interfaces, pp. 315–324 (2009)Google Scholar
  12. 12.
    Kinnebrew, J.S., Biswas, G.: Identifying Learning Behaviors by Contextualizing Differential Sequence Mining with Action Features and Performance Evolution. In: Proc. of EDM, 5th Int. Conf. on Educational Data Mining, pp. 57–64 (2012)Google Scholar
  13. 13.
    Sesma, L., Villanueva, A., Cabeza, R.: Evaluation of pupil center-eye corner vector for gaze estimation using a web cam. In: Proceedings of the Symposium on Eye-Tracking Research & Applications, pp. 217–220 (2012)Google Scholar
  14. 14.
    Iqbal, S.T., Bailey, B.P.: Using eye gaze patterns to identify user tasks. Presented at the The Grace Hopper Celebration of Women in Computing (2004)Google Scholar
  15. 15.
    Duchowski, A.T., Driver, J., Jolaoso, S., Tan, W., Ramey, B.N., Robbins, A.: Scanpath Comparison Revisited. In: Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications, pp. 219–226 (2010)Google Scholar
  16. 16.
    Madsen, A., Larson, A., Loschky, L., Rebello, N.S.: Using ScanMatch Scores to Understand Differences in Eye Movements Between Correct and Incorrect Solvers on Physics Problems. In: Proc. of Symp. on Eye Tracking Research & Applications, pp. 193–196 (2012)Google Scholar
  17. 17.
    West, J.M., Haake, A.R., Rozanski, E.P., Karn, K.S.: eyePatterns: software for identifying patterns and similarities across fixation sequences. In: Proceedings of the 2006 Symposium on Eye Tracking Research & Applications, pp. 149–154 (2006)Google Scholar
  18. 18.
    Eivazi, S., Bednarik, R.: Predicting Problem-Solving Behavior and Performance Levels from Visual Attention Data. In: 2nd Workshop on Eye Gaze in Intelligent Human Machine Interaction at IUI 2011 (2011)Google Scholar
  19. 19.
    Courtemanche, F., Aïmeur, E., Dufresne, A., Najjar, M., Mpondo, F.: Activity recognition using eye-gaze movements and traditional interactions. Interac. Comp. 23, 202–213 (2011)CrossRefGoogle Scholar
  20. 20.
    Kardan, S., Conati, C.: Exploring gaze data for determining user learning with an interactive simulation. In: Masthoff, J., Mobasher, B., Desmarais, M.C., Nkambou, R. (eds.) UMAP 2012. LNCS, vol. 7379, pp. 126–138. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Bondareva, D., Conati, C., Feyzi-Behnagh, R., Harley, J.M., Azevedo, R., Bouchet, F.: Inferring Learning from Gaze Data during Interaction with an Environment to Support Self-Regulated Learning. In: Lane, H.C., Yacef, K., Mostow, J., Pavlik, P. (eds.) AIED 2013. LNCS, vol. 7926, pp. 229–238. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  22. 22.
    Amar, R., Eagan, J., Stasko, J.: Low-Level Components of Analytic Activity in Information Visualization. In: Proc. of 2005 Symp. on Information Visualization, pp. 15–21 (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ben Steichen
    • 1
  • Michael M. A. Wu
    • 1
  • Dereck Toker
    • 1
  • Cristina Conati
    • 1
  • Giuseppe Carenini
    • 1
  1. 1.Department of Computer ScienceUniversity of British ColumbiaVancouverCanada

Personalised recommendations