Time-Sensitive User Profile for Optimizing Search Personlization

  • Ameni Kacem
  • Mohand Boughanem
  • Rim Faiz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8538)

Abstract

Thanks to social Web services, Web search engines have the opportunity to afford personalized search results that better fit the user’s information needs and interests. To achieve this goal, many personalized search approaches explore user’s social Web interactions to extract his preferences and interests, and use them to model his profile. In our approach, the user profile is implicitly represented as a vector of weighted terms which correspond to the user’s interests extracted from his online social activities. As the user interests may change over time, we propose to weight profiles terms not only according to the content of these activities but also by considering the freshness. More precisely, the weights are adjusted with a temporal feature. In order to evaluate our approach, we model the user profile according to data collected from Twitter. Then, we rerank initial search results accurately to the user profile. Moreover, we proved the significance of adding a temporal feature by comparing our method with baselines models that does not consider the user profile dynamics.

Keywords

Personalized search User profile Freshness Interests Dynamics Kernel function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Qiu, F., Cho, J.: Automatic identification of user interest for personalized search. In: 15th International Conference on World Wide Web, pp. 727–736. ACM, New York (2006)CrossRefGoogle Scholar
  2. 2.
    Vallet, D., Cantador, I., Jose, J.M.: Personalizing Web Search with Folksonomy-based User and Document Profiles. In: Gurrin, C., He, Y., Kazai, G., Kruschwitz, U., Little, S., Roelleke, T., Rüger, S., van Rijsbergen, K. (eds.) ECIR 2010. LNCS, vol. 5993, pp. 420–431. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Xu, S., Bao, S., Fei, B., Su, Z., Yu, Y.: Exploring folksonomy for personalized search. In: 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 155–162. ACM, New York (2008)Google Scholar
  4. 4.
    Speretta, M., Gauch, S.: Personalizing search based on user search histories. In: 2005 IEEE/WIC/ACM International Conference on Web Intelligence, pp. 622–628. IEEE Press, New York (2005)CrossRefGoogle Scholar
  5. 5.
    Dumais, S., Cutrell, E., Cadiz, J., Jancke, G., Sarin, R., Robbins, D.: Stuff I’ve seen: a system for personal information retrieval and re-use. In: 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval, pp. 72–79. ACM, New York (2003)Google Scholar
  6. 6.
    Shen, X., Zhai, C.: Exploiting query history for document ranking in interactive information retrieval. In: 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval, pp. 377–378. ACM, New York (2003)Google Scholar
  7. 7.
    Daoud, M., Boughanem, M., Tamine-Lechani, L.: Detecting Session Boundaries to Personalize Search Using a Conceptual User Context. In: Ao, S.I., Gelman, L. (eds.) Springer 2009. Advances in Electrical Engineering and Computational Science, vol. 39, pp. 471–482. ACM, New York (2009)Google Scholar
  8. 8.
    Bennett, P.N., White, R.W., Dumais, S.T.: Modeling the Impact of Short- and Long-Term Behavior on Search Personalization. In: 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 185–194. ACM, New York (2012)Google Scholar
  9. 9.
    Tan, B., Shen, X., Zhai, C.: Mining long-term search history to improve search accuracy. In: 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 718–723. ACM, New York (2006)CrossRefGoogle Scholar
  10. 10.
    Dou, Z., Song, R., Wen, J.: A large-scale evaluation and analysis of personalized search strategies. In: 16th International Conference on World Wide Web, pp. 581–590. ACM, New York (2007)CrossRefGoogle Scholar
  11. 11.
    Sugiyama, K., Hatano, K., Yoshikawa, M.: Adaptive Web search based on user profile constructed without any effort from user. In: 13th International Conference on World Wide Web, pp. 675–684. ACM, New York (2004)Google Scholar
  12. 12.
    Cai, Y., Li, Q.: Personalized search by tag-based user profile and resource profile in collaborative tagging systems. In: 19th ACM International Conference on Information and Knowledge Management, pp. 969–978. ACM, New York (2010)Google Scholar
  13. 13.
    Kritikopoulos, A., Sideri, M.: The compass filter: search engine result personalization using web communities. In: Mobasher, B., Anand, S.S. (eds.) ITWP 2003. LNCS (LNAI), vol. 3169, pp. 229–240. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Teevan, J., Morris, M., Bush, S.: Discovering and Using Groups to Improve Personalized Search. In: Second ACM International Conference on Web Search and Data Mining, pp. 15–24. ACM, New York (2009)CrossRefGoogle Scholar
  15. 15.
    Orlandi, F., Breslin, J., Passant, A.: Aggregated, Interoperable and Multi-Domain User Profiles for the Social Web. In: 8th International Conference on Symantic Systems I-SEMANTICS, pp. 41–48. ACM, New York (2012)CrossRefGoogle Scholar
  16. 16.
    Noll, M.G., Meinel, C.: Web Search Personalization via Social Bookmarking and Tagging. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 367–380. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Carmel, D., Zwerdling, N., Guy, I., Ofek-Koifman, S., Har’el, N., Ronen, I., Uziel, E., Yogev, S., Chernov, S.: Personalized social search based on the user’s social network. In: 18th ACM Conference on Information and Knowledge Management, pp. 1227–1236. ACM, New York (2009)Google Scholar
  18. 18.
    Liu, F., Yu, C., Meng, W.: Personalized Web Search For Improving Retrieval Effectiveness. IEEE Transactions on Knowledge and Data Engineering 16(1), 28–40 (2004)CrossRefGoogle Scholar
  19. 19.
    Micarelli, A., Sciarrone, F.: Anatomy and Empirical Evaluation of an Adaptive Web- Based Information Filtering System. In: User Modeling and User-Adapted Interaction, vol. 14(2-3), pp. 159–200. Kluwer Academic Publishers Hingham, MA (2004)Google Scholar
  20. 20.
    Pretschner, A., Gauch, S.: Ontology Based Personalized Search. In: 11th IEEE International Conference on Tools with Articial Intelligence, pp. 391–398. IEEE Press, New York (1999)Google Scholar
  21. 21.
    Shen, X., Tan, B., Zhai, C.: Context-sensitive information retrieval using implicit feedback. In: 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 43–50. ACM, New York (2005)Google Scholar
  22. 22.
    Zemirli, W.: Modèle d’accès personnalisé à l’information basé sur les diagrammes d’influence intégrant un profil multidimensionnel. Paul Sabatier University, Toulouse (2008)Google Scholar
  23. 23.
    Teevan, J., Dumais, S.T., Horvitz, E.: Personalizing search via automated analysis of interests and activities. In: 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 449–456. ACM, New York (2005)Google Scholar
  24. 24.
    Chirita, P., Frian, C.S., Nejdl, W.: Summarizing local context to personalize global web search. In: 15th ACM International Conference on Information and Knowledge Management, pp. 287–296. ACM, New York (2006)Google Scholar
  25. 25.
    Abel, F., Gao, Q., Houben, G., Tao, K.: Analyzing temporal dynamics in Twitter Profiles for Personalized Recommendations in the Social Web. In: 3rd International Conference on Web Science, pp. 1–8. ACM, New York (2011)Google Scholar
  26. 26.
    Lv, Y., Zhai, C.: Positional language models for information retrieval. In: 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 299–306. ACM, New York (2009)Google Scholar
  27. 27.
    Gerani, S., Carma, M.J., Crestani, F.: Proximity Based Opinion Retrieval. In: 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 403–410. ACM, New York (2010)Google Scholar
  28. 28.
    Jansen, B.J., Spink, A., Saracevic, T.: Real life, real users, and real needs: a study and analysis of user queries on the web. Information Processing and Management 36(2), 207–227 (2000)CrossRefGoogle Scholar
  29. 29.
    Cronen-Townsend, S., Croft, W.B.: Quantifying query ambiguity. In: Second International Conference on Human Language Technology Research, pp. 104–109. Morgan Kaufmann Publishers Inc., San Francisco (2002)CrossRefGoogle Scholar
  30. 30.
    Billsus, D., Pazzani, M.J.: User Modeling for Adaptive News Access. In: Journal of User Modeling and User-Adapted Interaction, vol. 10, pp. 147–180. Kluwer Academic Publishers Hingham, MA (2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ameni Kacem
    • 1
  • Mohand Boughanem
    • 2
  • Rim Faiz
    • 1
  1. 1.LARODEC, IHECCarthage PresidencyTunisTunisia
  2. 2.IRIT SIGToulouse CEDEX 9France

Personalised recommendations