Skip to main content

Depth Lower Bounds against Circuits with Sparse Orientation

  • Conference paper
Computing and Combinatorics (COCOON 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8591))

Included in the following conference series:

Abstract

We study depth lower bounds against non-monotone circuits, parametrized by a new measure of non-monotonicity: the orientation of a function f is the characteristic vector of the minimum sized set of negated variables needed in any DeMorgan circuit computing f. We prove trade-off results between the depth and the weight/structure of the orientation vectors in any circuit C computing the CLIQUE function on an n vertex graph. We prove that if C is of depth d and each gate computes a Boolean function with orientation of weight at most w (in terms of the inputs to C), then d ×w must be Ω(n). In particular, if the weights are \(o(\frac{n}{\log^k n})\), then C must be of depth ω(logk n). We prove a barrier for our general technique. However, using specific properties of the CLIQUE function (used in [4]) and the Karchmer-Wigderson framework [11], we go beyond the limitations and obtain lower bounds when the weight restrictions are less stringent.

We then study the depth lower bounds when the structure of the orientation vector is restricted. We demonstrate that this approach reaches out to the limits in terms of depth lower bounds by showing that slight improvements to our results separates NP from NC.

As our main tool, we generalize Karchmer-Wigderson game [11] for monotone functions to work for non-monotone circuits parametrized by the weight/structure of the orientation. We also prove structural results about orientation and prove connections between number of negations and weight of orientations required to compute a function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allender, E.: Circuit Complexity before the Dawn of the New Millennium. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS, vol. 1180, pp. 1–18. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  2. Allender, E.: Cracks in the defenses: Scouting out approaches on circuit lower bounds. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) CSR 2008. LNCS, vol. 5010, pp. 3–10. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Alon, N., Boppana, R.B.: The Monotone Circuit Complexity of Boolean Functions. Combinatorica 7(1), 1–22 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  4. Amano, K., Maruoka, A.: A superpolynomial lower bound for a circuit computing the clique function with at most (1/6) log log n negation gates. SIAM Journal on Computing 35(1), 201–216 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Edmonds, J.: Paths, trees, and flowers. Canad. J. Math. 17, 449–467 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fischer, M.: The Complexity of Negation-limited Networks — A Brief Survey. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 71–82. Springer, Heidelberg (1975)

    Google Scholar 

  7. Impagliazzo, R., Paturi, R., Saks, M.E.: Size-depth tradeoffs for threshold circuits. SIAM Journal of Computing 26(3), 693–707 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Iwama, K., Morizumi, H.: An explicit lower bound of 5n-o(n) for boolean circuits. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 353–364. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Jukna, S.: On the minimum number of negations leading to super-polynomial savings. Information Processing Letters 89(2), 71–74 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jukna, S.: Boolean Function Complexity: Advances and Frontiers. Algorithms and Combinatorics, vol. 27. Springer New York Inc. (2012)

    Google Scholar 

  11. Karchmer, M., Wigderson, A.: Monotone Circuits for Connectivity Require Super-logarithmic Depth. In: STOC, pp. 539–550 (1988)

    Google Scholar 

  12. Lovász, L.: On determinants, matchings, and random algorithms. In: Symposium on Fundamentals of Computation Theory (FCT), pp. 565–574 (1979)

    Google Scholar 

  13. Raz, R., Wigderson, A.: Probabilistic communication complexity of boolean relations. In: Proc. of the 30th FOCS, pp. 562–567 (1989)

    Google Scholar 

  14. Raz, R., Wigderson, A.: Monotone circuits for matching require linear depth. Journal of ACM 39(3), 736–744 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Razborov, A.A.: Lower Bounds for Monotone Complexity of Some Boolean Functions. Soviet Math. Doklady, 354–357 (1985)

    Google Scholar 

  16. Razborov, A.A.: Lower bounds on monotone complexity of the logical permanent. Mathematical Notes 37(6), 485–493 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  17. Håstad, J.: The shrinkage exponent of de morgan formulas is 2. SIAM Journal on Computing (1998)

    Google Scholar 

  18. Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer New York Inc. (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Koroth, S., Sarma, J. (2014). Depth Lower Bounds against Circuits with Sparse Orientation. In: Cai, Z., Zelikovsky, A., Bourgeois, A. (eds) Computing and Combinatorics. COCOON 2014. Lecture Notes in Computer Science, vol 8591. Springer, Cham. https://doi.org/10.1007/978-3-319-08783-2_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08783-2_51

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08782-5

  • Online ISBN: 978-3-319-08783-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics