Depth Lower Bounds against Circuits with Sparse Orientation

  • Sajin Koroth
  • Jayalal Sarma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8591)


We study depth lower bounds against non-monotone circuits, parametrized by a new measure of non-monotonicity: the orientation of a function f is the characteristic vector of the minimum sized set of negated variables needed in any DeMorgan circuit computing f. We prove trade-off results between the depth and the weight/structure of the orientation vectors in any circuit C computing the CLIQUE function on an n vertex graph. We prove that if C is of depth d and each gate computes a Boolean function with orientation of weight at most w (in terms of the inputs to C), then d ×w must be Ω(n). In particular, if the weights are \(o(\frac{n}{\log^k n})\), then C must be of depth ω(log k n). We prove a barrier for our general technique. However, using specific properties of the CLIQUE function (used in [4]) and the Karchmer-Wigderson framework [11], we go beyond the limitations and obtain lower bounds when the weight restrictions are less stringent.

We then study the depth lower bounds when the structure of the orientation vector is restricted. We demonstrate that this approach reaches out to the limits in terms of depth lower bounds by showing that slight improvements to our results separates NP from NC.

As our main tool, we generalize Karchmer-Wigderson game [11] for monotone functions to work for non-monotone circuits parametrized by the weight/structure of the orientation. We also prove structural results about orientation and prove connections between number of negations and weight of orientations required to compute a function.


Boolean Function Monotone Function Orientation Vector General Circuit Boolean Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allender, E.: Circuit Complexity before the Dawn of the New Millennium. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS, vol. 1180, pp. 1–18. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  2. 2.
    Allender, E.: Cracks in the defenses: Scouting out approaches on circuit lower bounds. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) CSR 2008. LNCS, vol. 5010, pp. 3–10. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Alon, N., Boppana, R.B.: The Monotone Circuit Complexity of Boolean Functions. Combinatorica 7(1), 1–22 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Amano, K., Maruoka, A.: A superpolynomial lower bound for a circuit computing the clique function with at most (1/6) log log n negation gates. SIAM Journal on Computing 35(1), 201–216 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Edmonds, J.: Paths, trees, and flowers. Canad. J. Math. 17, 449–467 (1965)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Fischer, M.: The Complexity of Negation-limited Networks — A Brief Survey. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 71–82. Springer, Heidelberg (1975)Google Scholar
  7. 7.
    Impagliazzo, R., Paturi, R., Saks, M.E.: Size-depth tradeoffs for threshold circuits. SIAM Journal of Computing 26(3), 693–707 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Iwama, K., Morizumi, H.: An explicit lower bound of 5n-o(n) for boolean circuits. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 353–364. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Jukna, S.: On the minimum number of negations leading to super-polynomial savings. Information Processing Letters 89(2), 71–74 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Jukna, S.: Boolean Function Complexity: Advances and Frontiers. Algorithms and Combinatorics, vol. 27. Springer New York Inc. (2012)Google Scholar
  11. 11.
    Karchmer, M., Wigderson, A.: Monotone Circuits for Connectivity Require Super-logarithmic Depth. In: STOC, pp. 539–550 (1988)Google Scholar
  12. 12.
    Lovász, L.: On determinants, matchings, and random algorithms. In: Symposium on Fundamentals of Computation Theory (FCT), pp. 565–574 (1979)Google Scholar
  13. 13.
    Raz, R., Wigderson, A.: Probabilistic communication complexity of boolean relations. In: Proc. of the 30th FOCS, pp. 562–567 (1989)Google Scholar
  14. 14.
    Raz, R., Wigderson, A.: Monotone circuits for matching require linear depth. Journal of ACM 39(3), 736–744 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Razborov, A.A.: Lower Bounds for Monotone Complexity of Some Boolean Functions. Soviet Math. Doklady, 354–357 (1985)Google Scholar
  16. 16.
    Razborov, A.A.: Lower bounds on monotone complexity of the logical permanent. Mathematical Notes 37(6), 485–493 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Håstad, J.: The shrinkage exponent of de morgan formulas is 2. SIAM Journal on Computing (1998)Google Scholar
  18. 18.
    Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer New York Inc. (1999)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sajin Koroth
    • 1
  • Jayalal Sarma
    • 1
  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations