Scheduling over Scenarios on Two Machines

  • Esteban Feuerstein
  • Alberto Marchetti-Spaccamela
  • Frans Schalekamp
  • René Sitters
  • Suzanne van der Ster
  • Leen Stougie
  • Anke van Zuylen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8591)


We consider scheduling problems over scenarios where the goal is to find a single assignment of the jobs to the machines which performs well over all possible scenarios. Each scenario is a subset of jobs that must be executed in that scenario and all scenarios are given explicitly. The two objectives that we consider are minimizing the maximum makespan over all scenarios and minimizing the sum of the makespans of all scenarios. For both versions, we give several approximation algorithms and lower bounds on their approximability. With this research into optimization problems over scenarios, we have opened a new and rich field of interesting problems.


job scheduling makespan minimization scenarios approximation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and approximation: Combinatorial optimization problems and their approximability properties. Springer (1999)Google Scholar
  2. 2.
    Austrin, P., Guruswami, V., Håstad, J.: (2 + ε)-SAT is NP-hard. Electronic Colloquium on Computational Complexity, TR13-159 (2013)Google Scholar
  3. 3.
    Ben-Tal, A., Nemirovski, A.: Robust optimization–methodology and applications. Mathematical Programming 92(3), 453–480 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bouyahia, Z., Bellalouna, M., Ghedira, K.: Load balancing a priori strategy for the probabilistic weighted flowtime problem. Comput. Ind. Eng. 64(1), 1–10 (2013)CrossRefGoogle Scholar
  5. 5.
    Bouyahia, Z., Bellalouna, M., Jaillet, P., Ghedira, K.: A priori parallel machines scheduling. Comput. Ind. Eng. 58(3), 488–500 (2010), Supply, Production and Distribution SystemsGoogle Scholar
  6. 6.
    Chekuri, C., Khanna, S.: On multidimensional packing problems. SIAM Journal on Computing 33(4), 837–851 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Epstein, L., Levin, A., Marchetti-Spaccamela, A., Megow, N., Mestre, J., Skutella, M., Stougie, L.: Universal sequencing on an unreliable machine. SIAM Journal on Computing 41, 565–586 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Feuerstein, E., Marchetti-Spaccamela, A., Schalekamp, F., Sitters, R., van der Ster, S., Stougie, L., van Zuylen, A.: Scheduling over scenarios on two machines. CoRR, abs/1404.4766 (2014)Google Scholar
  9. 9.
    Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990)Google Scholar
  10. 10.
    Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42(6), 1115–1145 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Gupta, A., Pál, M., Ravi, R., Sinha, A.: Sampling and cost-sharing: Approximation algorithms for stochastic optimization problems. SIAM Journal on Computing 40(5), 1361–1401 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Håstad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Jaillet, P.: A priori solution of a traveling salesman problem in which a random subset of the customers are visited. Oper. Res. 36(6), 929–936 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Karloff, H.J., Zwick, U.: A 7/8-approximation algorithm for MAX 3SAT? In: FOCS, pp. 406–415. IEEE Computer Society (1997)Google Scholar
  15. 15.
    Khot, S.: On the power of unique 2-prover 1-round games. In: Proceedings of 34th Annual ACM Symposium on Theory of Computing, pp. 767–775 (2002)Google Scholar
  16. 16.
    Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? SIAM J. Comput. 37(1), 319–357 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Zhang, J., Ye, Y., Han, Q.: Improved approximations for max set splitting and max NAE SAT. Discrete Applied Mathematics 142(1-3), 133–149 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Zwick, U.: Outward rotations: A tool for rounding solutions of semidefinite programming relaxations, with applications to MAX CUT and other problems. In: STOC, pp. 679–687 (1999)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Esteban Feuerstein
    • 1
  • Alberto Marchetti-Spaccamela
    • 2
  • Frans Schalekamp
    • 3
  • René Sitters
    • 4
    • 5
  • Suzanne van der Ster
    • 4
  • Leen Stougie
    • 4
    • 5
  • Anke van Zuylen
    • 3
  1. 1.Departamento de ComputaciónFCEyN, UBABuenos AiresArgentina
  2. 2.Sapienza University of RomeItaly
  3. 3.Department of MathematicsCollege of William and MaryWilliamsburgUSA
  4. 4.Vrije Universiteit AmsterdamThe Netherlands
  5. 5.CWI AmsterdamThe Netherlands

Personalised recommendations