Fixed Parameter Tractable Algorithms in Combinatorial Topology

  • Benjamin A. Burton
  • William Pettersson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8591)


To enumerate 3-manifold triangulations with a given property, one typically begins with a set of potential face pairing graphs (also known as dual 1-skeletons), and then attempts to flesh each graph out into full triangulations using an exponential-time enumeration. However, asymptotically most graphs do not result in any 3-manifold triangulation, which leads to significant “wasted time” in topological enumeration algorithms. Here we give a new algorithm to determine whether a given face pairing graph supports any 3-manifold triangulation, and show this to be fixed parameter tractable in the treewidth of the graph.

We extend this result to a “meta-theorem” by defining a broad class of properties of triangulations, each with a corresponding fixed parameter tractable existence algorithm. We explicitly implement this algorithm in the most generic setting, and we identify heuristics that in practice are seen to mitigate the large constants that so often occur in parameterised complexity, highlighting the practicality of our techniques.


Tree Decomposition Simple Property Boundary Face Combinatorial Topology Minimal Triangulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnborg, S.: Efficient algorithms for combinatorial problems on graphs with bounded decomposability—a survey. BIT 25(1), 2–23 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12(2), 308–340 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Berend, D., Tassa, T.: Improved bounds on Bell numbers and on moments of sums of random variables. Probab. Math. Statist. 30(2), 185–205 (2010)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the pathwidth and treewidth of graphs. J. Algorithms 21(2), 358–402 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Burton, B.A.: Face pairing graphs and 3-manifold enumeration. J. Knot Theory Ramifications 13(8), 1057–1101 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Burton, B.A.: Enumeration of non-orientable 3-manifolds using face-pairing graphs and union-find. Discrete & Computational Geometry 38(3), 527–571 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Burton, B.A.: The cusped hyperbolic census is complete (preprint, 2014),
  9. 9.
    Burton, B.A., Budney, R., Pettersson, W.: Regina: Software for 3-manifold topology and normal surface theory (1999-2013),
  10. 10.
    Burton, B.A., Lewiner, T., Paixão, J., Spreer, J.: Parameterized complexity of discrete Morse theory. In: SCG 2013: Proceedings of the 29th Annual Symposium on Computational Geometry, pp. 127–136. ACM (2013)Google Scholar
  11. 11.
    Burton, B.A., Spreer, J.: The complexity of detecting taut angle structures on triangulations. In: SODA 2013: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 168–183. SIAM (July 2012)Google Scholar
  12. 12.
    Callahan, P.J., Hildebrand, M.V., Weeks, J.R.: A census of cusped hyperbolic 3-manifolds. Math. Comp. 68(225), 321–332 (1999), with microfiche supplementGoogle Scholar
  13. 13.
    Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic. Discrete Appl. Math. 108(1-2), 23–52 (2001), International Workshop on Graph-Theoretic Concepts in Computer Science, Smolenice Castle (1998)Google Scholar
  14. 14.
    Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inform. and Comput. 85(1), 12–75 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    van Dijk, T., van den Heuvel, J.P., Slob, W.: Computing treewidth with LibTW (2006)Google Scholar
  16. 16.
    Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in Computer Science. Springer, New York (1999)CrossRefGoogle Scholar
  17. 17.
    Dunfield, N.M., Thurston, W.P.: Finite covers of random 3-manifolds. Invent. Math. 166(3), 457–521 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Hildebrand, M., Weeks, J.: A computer generated census of cusped hyperbolic 3-manifolds. In: Computers and Mathematics, Cambridge, MA, pp. 53–59. Springer, New York (1989)CrossRefGoogle Scholar
  19. 19.
    Jaco, W., Letscher, D., Rubinstein, J.H.: Algorithms for essential surfaces in 3-manifolds. In: Topology and geometry: commemorating SISTAG. Contemp. Math., vol. 314, pp. 107–124. Amer. Math. Soc., Providence (2002)Google Scholar
  20. 20.
    Jaco, W., Rubinstein, J.H.: 0-efficient triangulations of 3-manifolds. J. Differential Geom. 65(1), 61–168 (2003)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Kloks, T. (ed.): Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994)zbMATHGoogle Scholar
  22. 22.
    Martelli, B., Petronio, C.: Three-manifolds having complexity at most 9. Experimental Mathematics 10(2), 207–236 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Matveev, S.: Algorithmic topology and classification of 3-manifolds, 2nd edn. Algorithms and Computation in Mathematics, vol. 9. Springer, Berlin (2007)zbMATHGoogle Scholar
  24. 24.
    Matveev, S.V.: Computer recognition of three-manifolds. Experiment. Math. 7(2), 153–161 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    McKay, B.D.: Isomorph-free exhaustive generation. J. Algorithms 26(2), 306–324 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986)Google Scholar
  27. 27.
    Thistlethwaite, M.: Cusped hyperbolic manifolds with 8 tetrahedra (October 2010),

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Benjamin A. Burton
    • 1
  • William Pettersson
    • 1
  1. 1.The University of QueenslandBrisbaneAustralia

Personalised recommendations