Advertisement

Complexity of Dense Bicluster Editing Problems

  • Peng Sun
  • Jiong Guo
  • Jan Baumbach
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8591)

Abstract

Given a density measure Π, an undirected graph G and a nonnegative integer k, a Π-CLUSTER EDITING problem is to decide whether G can be modified into a graph where all connected components are Π-cliques, by at most k edge modifications. Previous studies have been conducted on the complexity and fixed-parameter tractability (FPT) of Π-CLUSTER EDITING based on several different density measures. However, whether these conclusions hold on bipartite graphs is yet to be examined. In this paper, we focus on three different density measures for bipartite graphs: (1) having at most s missing edges for each vertex (s-biplex), (2) having average degree at least |V| − s (average-s-biplex) and (3) having at most s missing edges within a single disjoint component (s-defective bicliques). First, the NP-completeness of the three problems is discussed and afterwards we show all these problems are fixed-parameter tractable with respect to the parameter (s,k).

Keywords

Bicluster editing Parameterized complexity Data reduction NP-hardness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abu-Khzam, F.N.: The multi-parameterized cluster editing problem. In: Widmayer, P., Xu, Y., Zhu, B. (eds.) COCOA 2013. LNCS, vol. 8287, pp. 284–294. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Ailon, N., Avigdor-Elgrabli, N., Liberty, E.: An improved algorithm for bipartite correlation clustering. arXiv preprint arXiv:1012.3011 (2010)Google Scholar
  3. 3.
    Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56(1-3), 89–113 (2004)CrossRefzbMATHGoogle Scholar
  4. 4.
    Böcker, S., Briesemeister, S., Bui, Q.B.A., Truß, A.: Going weighted: Parameterized algorithms for cluster editing. Theoretical Computer Science 410(52), 5467–5480 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Cao, Y., Chen, J.: Cluster editing: Kernelization based on edge cuts. In: Raman, V., Saurabh, S. (eds.) IPEC 2010. LNCS, vol. 6478, pp. 60–71. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Chen, J., Meng, J.: A 2k kernel for the cluster editing problem. Journal of Computer and System Sciences 78(1), 211–220 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Cheng, Y., Church, G.M.: Biclustering of expression data. In: ISMB, vol. 8, pp. 93–103 (2000)Google Scholar
  8. 8.
    Fellows, M., Langston, M., Rosamond, F., Shaw, P.: Efficient parameterized preprocessing for cluster editing. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 312–321. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Fellows, M.R., Downey, R.G.: Parameterized complexity (1999)Google Scholar
  10. 10.
    Gonçalves, J.P., Madeira, S.C., Oliveira, A.L.: Biggests: Integrated environment for biclustering analysis of time series gene expression data. BMC Research Notes 2(1), 124 (2009)CrossRefGoogle Scholar
  11. 11.
    Guo, J.: A more effective linear kernelization for cluster editing. Theoretical Computer Science 410(8), 718–726 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Guo, J., Hüffner, F., Komusiewicz, C., Zhang, Y.: Improved algorithms for bicluster editing. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 445–456. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Guo, J., Kanj, I.A., Komusiewicz, C., Uhlmann, J.: Editing graphs into disjoint unions of dense clusters. Algorithmica 61(4), 949–970 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: A more relaxed model for graph-based data clustering: S-plex cluster editing. SIAM Journal on Discrete Mathematics 24(4), 1662–1683 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Harpaz, R., Perez, H., Chase, H.S., Rabadan, R., Hripcsak, G., Friedman, C.: Biclustering of adverse drug events in the fda’s spontaneous reporting system. Clinical Pharmacology & Therapeutics 89(2), 243–250 (2010)CrossRefGoogle Scholar
  16. 16.
    Niedermeier, R.: Invitation to fixed-parameter algorithms, vol. 3. Oxford University Press, Oxford (2006)CrossRefzbMATHGoogle Scholar
  17. 17.
    Seidman, S.B., Foster, B.L.: A graph-theoretic generalization of the clique concept. Journal of Mathematical Sociology 6(1), 139–154 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Applied Mathematics 144(1), 173–182 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Sun, P., Guo, J., Baumbach, J.: Integrated simultaneous analysis of different biomedical data types with exact weighted bi-cluster editing. Journal of Integrative Bioinformatics 9(2), 197 (2012)Google Scholar
  20. 20.
    van Zuylen, A.: Deterministic approximation algorithms for ranking and clustering problems. Technical Report 1431. School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY (2005)Google Scholar
  21. 21.
    Wittkop, T., Baumbach, J., Lobo, F.P., Rahmann, S.: Large scale clustering of protein sequences with force-a layout based heuristic for weighted cluster editing. BMC Bioinformatics 8(1), 396 (2007)CrossRefGoogle Scholar
  22. 22.
    Wittkop, T., Emig, D., Lange, S., Rahmann, S., Albrecht, M., Morris, J.H., Böcker, S., Stoye, J., Baumbach, J.: Partitioning biological data with transitivity clustering. Nature Methods 7(6), 419–420 (2010)CrossRefGoogle Scholar
  23. 23.
    Wittkop, T., Emig, D., Truss, A., Albrecht, M., Böcker, S., Baumbach, J.: Comprehensive cluster analysis with transitivity clustering. Nature Protocols 6(3), 285–295 (2011)CrossRefGoogle Scholar
  24. 24.
    Yu, H., Paccanaro, A., Trifonov, V., Gerstein, M.: Predicting interactions in protein networks by completing defective cliques. Bioinformatics 22(7), 823–829 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Peng Sun
    • 1
  • Jiong Guo
    • 3
  • Jan Baumbach
    • 2
  1. 1.Max Planck Institute for InformaticsSaarbrückenGermany
  2. 2.Institute for Mathematics and Computer ScienceUniversity of Southern DenmarkOdense MDenmark
  3. 3.MMCI Cluster of ExcellenceSaarbrückenGermany

Personalised recommendations