On the Kernelization Complexity of String Problems

  • Manu Basavaraju
  • Fahad Panolan
  • Ashutosh Rai
  • M. S. Ramanujan
  • Saket Saurabh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8591)

Abstract

In Closest String problem we are given an alphabet Σ, a set of strings S = {s1,s2, …,sk} over Σ such that |si| = n and an integer d. The objective is to check whether there exists a string s over Σ such that dH(s,si) ≤ d, i ∈ {1,…, k}, where dH(x,y) denotes the number of places strings x and y differ at. Closest String is a prototype string problem. This problem together with several of its variants such as Distinguishing String Selection and Closest Substring have been extensively studied from parameterized complexity perspective. These problems have been studied with respect to parameters that are combinations of k, d, |Σ| and n. However, surprisingly the kernelization question for these problems (for the versions when they admit fixed parameter tractable algorithms) is not studied at all. In this paper we fill this gap in the literature and do a comprehensive study of these problems from kernelization complexity perspective. We almost settle all the problems by either obtaining a polynomial kernel or showing that the problem does not admit a polynomial kernel assuming a complexity theoretic assumption.

Keywords

Closest String Kernelization Cross-Composition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andoni, A., Indyk, P., Patrascu, M.: On the optimality of the dimensionality reduction method. In: FOCS, pp. 449–458 (2006)Google Scholar
  2. 2.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Cross-composition: A new technique for kernelization lower bounds. In: STACS, pp. 165–176 (2011)Google Scholar
  4. 4.
    Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and disjoint paths. Theor. Comput. Sci. 412(35), 4570–4578 (2011)CrossRefMATHGoogle Scholar
  5. 5.
    Boucher, C., Ma, B.: Closest string with outliers. BMC Bioinformatics 12(S-1), S55 (2011)Google Scholar
  6. 6.
    Buhler, J., Tompa, M.: Finding motifs using random projections. Journal of Computational Biology 9(2), 225–242 (2002)CrossRefGoogle Scholar
  7. 7.
    Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. In: STOC, pp. 251–260 (2010)Google Scholar
  8. 8.
    Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through colors and ids. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 378–389. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Fellows, M.R., Gramm, J., Niedermeier, R.: On the parameterized intractability of CLOSEST SUBSTRING and related problems. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 262–273. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Fellows, M.R., Gramm, J., Niedermeier, R.: On the parameterized intractability of motif search problems. Combinatorica 26(2), 141–167 (2006)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. In: STOC, pp. 133–142 (2008)Google Scholar
  12. 12.
    Frances, M., Litman, A.: On covering problems of codes. Theory Comput. Syst. 30(2), 113–119 (1997)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Gramm, J., Niedermeier, R., Rossmanith, P.: Exact solutions for closest string and related problems. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 441–453. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Lanctot, J.K., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string selection problems. Inf. Comput. 185(1), 41–55 (2003)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Li, M., Ma, B., Wang, L.: Finding similar regions in many sequences. J. Comput. Syst. Sci. 65(1), 73–96 (2002)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Li, M., Ma, B., Wang, L.: On the closest string and substring problems. J. ACM 49(2), 157–171 (2002)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Ma, B.: A polynominal time approximation scheme for the closest substring problem. In: Giancarlo, R., Sankoff, D. (eds.) CPM 2000. LNCS, vol. 1848, pp. 99–107. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Marx, D.: The closest substring problem with small distances. In: FOCS, pp. 63–72 (2005)Google Scholar
  19. 19.
    Pevzner, P.A.: Computational molecular biology - an algorithmic approach. MIT Press (2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Manu Basavaraju
    • 1
  • Fahad Panolan
    • 1
  • Ashutosh Rai
    • 1
  • M. S. Ramanujan
    • 1
  • Saket Saurabh
    • 1
  1. 1.The Institute of Mathematical SciencesChennaiIndia

Personalised recommendations