Building above Read-once Polynomials: Identity Testing and Hardness of Representation

  • Meena Mahajan
  • B. V. Raghavendra Rao
  • Karteek Sreenivasaiah
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8591)


Polynomial Identity Testing (PIT) algorithms have focussed on polynomials computed either by small alternation-depth arithmetic circuits, or by read-restricted formulas. Read-once polynomials (ROPs) are computed by read-once formulas (ROFs) and are the simplest of read-restricted polynomials. Building structures above these, we show:
  1. 1

    A deterministic polynomial-time non-black-box PIT algorithm for ∑ (2)· ∏ ·ROF.

  2. 2

    Weak hardness of representation theorems for sums of powers of constant-free ROPs and for 0-justified alternation-depth-3 ROPs.



Polynomial Identity Arithmetic Circuit Multilinear Polynomial Isomorphism Testing Deterministic Polynomial Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Alo99]
    Alon, N.: Combinatorial nullstellensatz. Combinatorics, Problem and Computing 8 (1999)Google Scholar
  2. [AV08]
    Agrawal, M., Vinay, V.: Arithmetic circuits: A chasm at depth four. In: FOCS, pp. 67–75 (2008)Google Scholar
  3. [AvMV11]
    Anderson, M., van Melkebeek, D., Volkovich, I.: Derandomizing polynomial identity testing for multilinear constant-read formulae. In: CCC, pp. 273–282 (2011)Google Scholar
  4. [BE11]
    Bläser, M., Engels, C.: Randomness efficient testing of sparse black box identities of unbounded degree over the reals. In: STACS, pp. 555–566 (2011)Google Scholar
  5. [BHS08]
    Bläser, M., Hardt, M., Steurer, D.: Asymptotically optimal hitting sets against polynomials. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 345–356. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. [BOT88]
    Ben-Or, M., Tiwari, P.: A deterministic algorithm for sparse multivariate polynominal interpolation (extended abstract). In: STOC, pp. 301–309 (1988)Google Scholar
  7. [DS07]
    Dvir, Z., Shpilka, A.: Locally decodable codes with two queries and polynomial identity testing for depth 3 circuits. SIAM J. Comput. 36(5), 1404–1434 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  8. [FMM12]
    Fournier, H., Malod, G., Mengel, S.: Monomials in arithmetic circuits: Complete problems in the counting hierarchy. In: STACS, pp. 362–373 (2012)Google Scholar
  9. [GKKS13]
    Gupta, A., Kamath, P., Kayal, N., Saptharishi, R.: Arithmetic circuits: A chasm at depth three. In: FOCS, pp. 578–587 (2013)Google Scholar
  10. [Kay12]
    Kayal, N.: An exponential lower bound for the sum of powers of bounded degree polynomials. ECCC 19(TR12-081), 81 (2012)Google Scholar
  11. [KI04]
    Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means proving circuit lower bounds. Computational Complexity 13(1-2), 1–46 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  12. [KS01]
    Klivans, A., Spielman, D.A.: Randomness efficient identity testing of multivariate polynomials. In: STOC, pp. 216–223 (2001)Google Scholar
  13. [KS07]
    Kayal, N., Saxena, N.: Polynomial identity testing for depth 3 circuits. Computational Complexity 16(2), 115–138 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  14. [MRS14]
    Mahajan, M., Raghavendra Rao, B.V., Sreenivasaiah, K.: Monomials, multilinearity and identity testing in simple read-restricted circuits. Theoretical Computer Science 524, 90–102 (2014), preliminary version in MFCS 2012Google Scholar
  15. [RS11]
    Raghavendra Rao, B.V., Sarma, J.M.N.: Isomorphism testing of read-once functions and polynomials. In: FSTTCS, pp. 115–126 (2011)Google Scholar
  16. [RS13]
    Raghavendra Rao, B.V., Sarma, J.M.N.: Isomorphism testing of read-once functions and polynomials (2013) (Submitted Manuscript)Google Scholar
  17. [Sax14]
    Saxena, N.: Progress on polynomial identity testing - ii. CoRR, abs/1401.0976 (2014)Google Scholar
  18. [Sch80]
    Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27(4), 701–717 (1980)CrossRefzbMATHGoogle Scholar
  19. [SV08]
    Shpilka, A., Volkovich, I.: Read-once polynomial identity testing. STOC, pp. 507–516 (2010), See also ECCC TR-2010-011Google Scholar
  20. [SV10]
    Shpilka, A., Volkovich, I.: Read-once polynomial identity testing. In: ECCC, p. 011 (2010), Preliminary version in STOC 2010Google Scholar
  21. [SY10]
    Shpilka, A., Yehudayoff, A.: Arithmetic circuits: A survey of recent results and open questions. Found. Trends Theor. Comput. Sci. 5(3), 207–388 (2010)MathSciNetGoogle Scholar
  22. [Zip79]
    Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, K.W. (ed.) EUROSAM 1979 and ISSAC 1979. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg (1979)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Meena Mahajan
    • 1
  • B. V. Raghavendra Rao
    • 2
  • Karteek Sreenivasaiah
    • 1
  1. 1.The Institute of Mathematical SciencesChennaiIndia
  2. 2.Indian Institute of Technology MadrasChennaiIndia

Personalised recommendations