3D Dendrite Spine Detection - A Supervoxel Based Approach

  • César Antonio Ortiz
  • Consuelo Gonzalo-Martí
  • José Maria Peña
  • Ernestina Menasalvas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8537)


In neurobiology, the identification and reconstruction of dendritic spines from large microscopy image datasets is an important tool for the study of neuronal functions and biophysical properties. But the problem of how to automatically and accurately detect and analyse structural information from dendrites images in 3D confocal microscopy has not been completely solved. We propose an novel approach to detect and extract dendritic spines regardless their size o type, for images stacks result of 3D confocal microscopy. This method is based on supervoxel segmentation and their classification using a number of different, complementary algorithms.


segmentation supervoxels dendrite dendritic spine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rodriguez, A., Ehlenberger, D.B., Dickstein, D.L., Hof, P.R., Wearne, S.L.: Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images. PLoS One 3(4), e1997 (2008)CrossRefGoogle Scholar
  2. 2.
    Li, Q., Zhou, X., Deng, Z., Baron, M., Teylan, M.A., Kim, Y., Wong, S.T.C.: A novel surface-based geometric approach for 3d dendritic spine detection from multi-photon excitation microscopy images. In: ISBI, pp. 1255–1258. IEEE (2009)Google Scholar
  3. 3.
    Zhou, W., Li, H., Zhou, X.: 3d neuron dendritic spine detection and dendrite reconstruction. IJCAET 1(4), 516–531 (2009)CrossRefGoogle Scholar
  4. 4.
    Xu, X., Cheng, J., Witt, R.M., Sabatini, B.L., Wong, S.T.C.: A shape analysis method to detect dendritic spine in 3d optical microscopy image. In: ISBI, pp. 554–557. IEEE (2006)Google Scholar
  5. 5.
    Leymarie, F.F., Levine, M.D.: Simulating the grassfire transform using an active contour model. IEEE Trans. Pattern Anal. Mach. Intell. 14(1), 56–75 (1992)CrossRefGoogle Scholar
  6. 6.
    Janoos, F., Mosaliganti, K., Xu, X., Machiraju, R., Huang, K., Wong, S.T.C.: Robust 3d reconstruction and identification of dendritic spines from optical microscopy imaging. Medical Image Analysis 13(1), 167–179 (2009)CrossRefGoogle Scholar
  7. 7.
    Zhang, Y., Zhou, X., Witt, R.M., Sabatini, B.L., Adjeroh, D.A., Wong, S.T.C.: Automated spine detection using curvilinear structure detector and lda classifier. In: ISBI, pp. 528–531 (2007)Google Scholar
  8. 8.
    Jaeger, S., Palaniappan, K., Casas-Delucchi, C.S., Cardoso, M.C.: Classification of cell cycle phases in 3d confocal microscopy using pcna and chromocenter features. In: Proceedings of the Seventh Indian Conference on Computer Vision, Graphics and Image Processing, ICVGIP 2010, pp. 412–418. ACM, New York (2010)Google Scholar
  9. 9.
    He, W., Hamilton, T.A., Cohen, A.R., Holmes, T.J., Pace, C., Szarowski, D.H., Turner, J.N., Roysam, B.: Automated three-dimensional tracing of neurons in confocal and brightfield images. Microsc. Microanal 9, 296–310 (2003)CrossRefGoogle Scholar
  10. 10.
    Ren, X., Malik, J.: Learning a classification model for segmentation. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, ICCV 2003, vol. 2, pp. 10–17. IEEE Computer Society, Washington, DC (2003)Google Scholar
  11. 11.
    Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Ssstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(11), 2274–2282 (2012)CrossRefGoogle Scholar
  12. 12.
    Lucchi, A., Smith, K., Achanta, R., Knott, G., Fua, P.: Supervoxel-based segmentation of mitochondria in em image stacks with learned shape features. IEEE Trans. Med. Imaging 31(2), 474–486 (2012)CrossRefGoogle Scholar
  13. 13.
    Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: Optimization by a colony of cooperating agents. IEEE Trans. on Systens, Man and Cybernetics-Part B 26(1), 29–41 (1996)CrossRefGoogle Scholar
  14. 14.
    Silin, D., Patzek, T.: Pore space morphology analysis using maximal inscribed spheres. Physica A: Statistical and Theoretical Physics 371(2), 336–360 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • César Antonio Ortiz
    • 1
  • Consuelo Gonzalo-Martí
    • 1
  • José Maria Peña
    • 2
  • Ernestina Menasalvas
    • 1
  1. 1.Centro de Tecnología BiomédicaUniversidad Politécnica de MadridMadridSpain
  2. 2.Departamento de Arquitectura y Tecnología de Sistemas InformáticosUniversidad Politécnica de MadridMadridSpain

Personalised recommendations