Managing Depth Information Uncertainty in Inland Mobile Navigation Systems

  • Natalia Wawrzyniak
  • Tomasz Hyla
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8537)


Rough sets theory allows to model uncertainty in decision support systems. Electronic Charts Display and Information Systems are based on spatial data and together with build-in analysis tools pose primary aid in navigation. Mobile applications for inland waters use the same spatial information in form of Electronic Nautical Charts. In this paper we present a new approach for designation of a safety depth contour in inland mobile navigation. In place of manual setting of a safety depth value for the need of navigation-aid algorithm, an automatic solution is proposed. The solution is based on spatial characteristics and values derived from bathymetric data and system itself. Rough sets theory is used to reduce number of conditional attributes and to build rule matrix for decision-support algorithm.


depth uncertainty spatial information rough sets inland navigation electronic charts decision support 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    IHO, S-52 standard, Specifications for chart content and display aspects of ECDISGoogle Scholar
  2. 2.
    IMO, Resolution MSC.232(82), Adoption of the revised performance standards for electronic chart diplay and information systems, ECDIS (2006)Google Scholar
  3. 3.
    Stateczny, A., Kazimierski, W.: A comparison of the target tracking in marine navigational radars by means of GRNN filter and numerical filter. In: 2008 IEEE Radar Conference, Rome, vol. 1-4, pp. 1994–1997 (2008)Google Scholar
  4. 4.
    Stateczny, A., Kazimierski, W.: Determining Manoeuvre Detection Threshold of GRNN Filter in the Process of Tracking in Marine Navigational Radars. In: Kawalec, A., Kaniewski, P. (eds.) 2008 Proceedings IRS, Wrocław, pp. 242–245 (2008)Google Scholar
  5. 5.
    Kazimierski, W., Wawrzyniak, N.: Modification of ECDIS interface for the purposes of geoinformatic system for port security. Annuals of Navigation, 51–70 (2013)Google Scholar
  6. 6.
    IHO, S57 standard, Transfer Standard for Digital Hydrographic Data (2000)Google Scholar
  7. 7.
    Stateczny, A.: Rzeczny system informacyjny dla dolnej Odry. Roczniki Geomatyki (Annals of Geomatics) 5, 49–54 (2007)Google Scholar
  8. 8.
    Vetter, L., Jonas, M., Schroeder, W., Pesh, R.: Marine Geographic Information Systems. In: Kresse, W., Danko, D. (eds.) Handbook of Geographic Information, pp. 761–776. Springer (2012)Google Scholar
  9. 9.
    Slowinski, R., Greco, S., Matarazzo, B.: Rough Sets in Decision Making. In: Mayers, R. (ed.) Encyclopedia of Complexity and Systems Science, pp. 7753–7787. Springer (2009)Google Scholar
  10. 10.
    Devillers, R., Stein, A., Bédard, Y., Chrisman, N., Fisher, P., Shi, W.: Thirty years of research on spatial data quality: achievements, failures, and opportunities. Transactions in GIS 14(4), 387–400 (2010)CrossRefGoogle Scholar
  11. 11.
    Wenzhong, S., Fisher, P., Goodchild, M.: Spatial data quality. CRC Press (2003)Google Scholar
  12. 12.
    Felcenloben, D.: Uncertainety of spatial data in GIS systems. Acta Sci. Pol. Geod. Descr. Terr. 9(3), 3–12 (2010)Google Scholar
  13. 13.
    Przyborski, M., Pyrchla, J.: Reliability of the navigational data. In: Kłopotek, M.A., Wierzchoń, S.T., Trojanowski, K. (eds.) IIS: IIPWM 03. AISC, vol. 22, pp. 541–545. Springer, Heidelberg (2003)Google Scholar
  14. 14.
    Maleika, W., Palczynski, M., Frejlichowski, D.: Effect of Density of Measurement Points Collected from a Multibeam Echosounder on the Accuracy of a Digital Terrain Model. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.) ACIIDS 2012, Part III. LNCS, vol. 7198, pp. 456–465. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Maleika, W., Palczynski, M., Frejlichowski, D.: Interpolation Methods and the Accuracy of Bathymetric Seabed Models Based on Multibeam Echosounder Data. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.) ACIIDS 2012, Part III. LNCS (LNAI), vol. 7198, pp. 466–475. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Lubczonek, J.: Hybrid neural model of the sea bottom surface. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 1154–1160. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Stateczny, A.: The neural method of sea bottom shape modelling for the spatial maritime information system. In: Brebbia, C., Olivella, J. (eds.) Maritime Engineering and Ports II, Barcelona. Water Studies Series, vol. 9, pp. 251–259 (2000)Google Scholar
  18. 18.
    Lubczonek, J., Stateczny, A.: Concept of neural model of the sea bottom surface. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft Computing. AISC, vol. 19, pp. 861–866. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Pawlak, Z.: Rough sets. International Journal of Computer & Information Sciences 11(5), 341–356 (1982)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Natalia Wawrzyniak
    • 1
  • Tomasz Hyla
    • 2
  1. 1.Institute of GeoinformaticsMaritime University of SzczecinPoland
  2. 2.Marine Technology Ltd.SzczecinPoland

Personalised recommendations