MedVir: An Interactive Representation System of Multidimensional Medical Data Applied to Traumatic Brain Injury’s Rehabilitation Prediction

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8537)


Clinicians could model the brain injury of a patient through his brain activity. However, how this model is defined and how it changes when the patient is recovering are questions yet unanswered. In this paper, the use of MedVir framework is proposed with the aim of answering these questions. Based on complex data mining techniques, this provides not only the differentiation between TBI patients and control subjects (with a 72% of accuracy using 0.632 Bootstrap validation), but also the ability to detect whether a patient may recover or not, and all of that in a quick and easy way through a visualization technique which allows interaction.


dimensionality reduction multivariate medical data feature selection data mining visualization interaction virtual reality TBI MEG 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blum, A.L., Langley, P.: Selection of relevant features and examples in machine learning. Artificial Intelligence 97, 245–271 (1997)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Jeffery, I.B., Higgins, D.G., Culhane, A.C.: Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data. BMC Bioinformatics 7, 359+ (2006)Google Scholar
  3. 3.
    Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelligence 97, 273–324 (1997)CrossRefGoogle Scholar
  4. 4.
    Ni, B., Liu, J.: A hybrid filter/wrapper gene selection method for microarray classification. In: Proceedings of 2004 International Conference on Machine Learning and Cybernetics, vol. 4, pp. 2537–2542. IEEE (2004)Google Scholar
  5. 5.
    Inza, I., Larrañaga, P., Blanco, R., Cerrolaza, A.J.: Filter versus wrapper gene selection approaches in dna microarray domains. Artificial Intelligence in Medicine 31, 91–103 (2004)CrossRefGoogle Scholar
  6. 6.
    Keim, D.A.: Information Visualization and Visual Data Mining. IEEE Transactions on Visualization and Computer Graphics 8, 1–8 (2002)CrossRefGoogle Scholar
  7. 7.
    Keim, D.A., Kriegel, H.P.: Visualization Techniques for Mining Large Databases: A Comparison. Transactions on Knowledge and Data Engineering, Special Issue on Data Mining 8, 923–938 (1996)CrossRefGoogle Scholar
  8. 8.
    Hartigan, J.: Printer graphics for clustering. Journal of Statistical Computation and Simulation 4, 187–213 (1975)CrossRefGoogle Scholar
  9. 9.
    Furnas, G.W., Buja, A.: Prosection Views: Dimensional Inference through Sections and Projections. Journal of Computational and Graphical Statistics 3, 323–385 (1994)MathSciNetGoogle Scholar
  10. 10.
    Inselberg, A.: Multidimensional Detective. In: Proceedings of the 1997 IEEE Symposium on Information Visualization, INFOVIS 1997, pp. 100–107. IEEE Computer Society, Washington, DC (1997)Google Scholar
  11. 11.
    Beddow, J.: Shape Coding of Multidimensional Data on a Microcomputer Display. In: IEEE Visualization, pp. 238–246 (1990)Google Scholar
  12. 12.
    Peano, G.: Sur une courbe, qui remplit toute une aire plane. Mathematische Annalen 36, 157–160 (1890)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Keim, D.A., Ankerst, M., Kriegel, H.P.: Recursive Pattern: A Technique for Visualizing Very Large Amounts of Data. In: Proceedings of the 6th Conference on Visualization 1995, VIS 1995, pp. 279–286. IEEE Computer Society, Washington, DC (1995)Google Scholar
  14. 14.
    Keim, D.A., Krigel, H.P.: VisDB: Database Exploration Using Multidimensional Visualization. IEEE Comput. Graph. Appl. 14, 40–49 (1994)CrossRefGoogle Scholar
  15. 15.
    Mihalisin, T., Gawlinski, E., Timlin, J., Schwegler, J.: Visualizing a Scalar Field on an N-dimensional Lattice. In: Proceedings of the 1st Conference on Visualization 1990, VIS 1990, pp. 255–262. IEEE Computer Society Press, Los Alamitos (1990)Google Scholar
  16. 16.
    LeBlanc, J., Ward, M.O., Wittels, N.: Exploring N-dimensional Databases. In: Proceedings of the 1st Conference on Visualization 1990, VIS 1990, pp. 230–237. IEEE Computer Society Press, Los Alamitos (1990)Google Scholar
  17. 17.
    de Oliveira, M.C.F., Levkowitz, H.: From Visual Data Exploration to Visual Data Mining: A Survey. IEEE Trans. Vis. Comput. Graph. 9, 378–394 (2003)CrossRefGoogle Scholar
  18. 18.
    Chernoff, H.: The Use of Faces to Represent Points in K-Dimensional Space Graphically. Journal of the American Statistical Association 68, 361–368 (1973)CrossRefGoogle Scholar
  19. 19.
    Chambers, J., Cleveland, W., Kleiner, B., Tukey, P.: Graphical Methods for Data Analysis. The Wadsworth Statistics/Probability Series. Duxury, Boston (1983)zbMATHGoogle Scholar
  20. 20.
    Lee, J.A., Verleysen, M.: Nonlinear dimensionality reduction. Springer, New York (2007)CrossRefGoogle Scholar
  21. 21.
    Wang, J.: Geometric Structure of High-dimensional Data and Dimensionality Reduction. Higher Education Press (2012)Google Scholar
  22. 22.
    Gracia, A., González, S., Robles, V., Menasalvas, E.: A methodology to compare Dimensionality Reduction algorithms in terms of loss of quality. Information Sciences (2014)Google Scholar
  23. 23.
    Speed, T.: Statistical analysis of gene expression microarray data. CRC Press (2004)Google Scholar
  24. 24.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. ACM SIGKDD Explorations Newsletter 11, 10–18 (2009)CrossRefGoogle Scholar
  25. 25.
    Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann Publishers Inc., San Francisco (2005)zbMATHGoogle Scholar
  26. 26.
    Efron, B., Tibshirani, R.: Improvements on cross-validation: the 632+ bootstrap method. Journal of the American Statistical Association 92, 548–560 (1997)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Kandogan, E.: Visualizing multi-dimensional clusters, trends, and outliers using star coordinates. In: KDD 2001: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 107–116. ACM, New York (2001)Google Scholar
  28. 28.
    Castellanos, N.P., Paul, N., Ordonez, V.E., Demuynck, O., Bajo, R., Campo, P., Bilbao, A., Ortiz, T., del Pozo, F., Maestu, F.: Reorganization of functional connectivity as a correlate of cognitive recovery in acquired brain injury. Brain Journal 133, 2365–2381 (2010)CrossRefGoogle Scholar
  29. 29.
    Mallat, S.: A Wavelet Tour of Signal Processing, The Sparse Way, 3rd edn. Academic Press (2008)Google Scholar
  30. 30.
    Torrence, C., Compo, G.P.: A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61–78 (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Computer Science SchoolUniversidad Politécnica de MadridMadridSpain
  2. 2.Center for Biomedical TechnologyUniversidad Politécnica de MadridSpain
  3. 3.Department of Basic Psychology IComplutense University of MadridSpain

Personalised recommendations