Advertisement

The Relational Construction of Conceptual Patterns - Tools, Implementation and Theory

  • Piero Pagliani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8537)

Abstract

Different conceptual ways to analyse information are here defined by means of the fundamental notion of a relation. This approach makes it possible to compare different mathematical notions and tools used in qualitative data analysis. Moreover, since relations are representable by Boolean matrices, computing the conceptual-oriented operators is straightforward. Finally, the relational-based approach makes it possible to conceptually analyse not only sets but relations themselves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrusci, V.M.: Lambek Syntactic Calculus and Noncommutative Linear Logic. In: Atti del Convegno Nuovi Problemi della Logica e della Filosofia della Scienza, Viareggio, Italia, Bologna, Clueb, vol. II, pp. 251–258 (1991)Google Scholar
  2. 2.
    Antoni, L., Krajči, S., Krídlo, O., Macek, B., Pisková, L.: Relationship between two FCA approaches on heterogeneous formal contexts. In: Szathmary, L., Priss, U. (eds.) CLA 2012, Universidad de Malaga, pp. 93–102 (2012)Google Scholar
  3. 3.
    Ciucci, D., Dubois, D., Prade, H.: Oppositions in Rough Set Theory. In: Li, T., Nguyen, H.S., Wang, G., Grzymala-Busse, J., Janicki, R., Hassanien, A.E., Yu, H. (eds.) RSKT 2012. LNCS, vol. 7414, pp. 504–513. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Díaz, J.C., Medina, J.: Multi-adjoint relation equations. Definition, properties and solutions using concept lattices. Information Sciences 252, 100–109 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Düntsch, I., Gegida, G.: Modal-style operators in qualitative data analysis. In: Proc. of the 2002 IEEE Int.al Conf. on Data Mining, pp. 155–162 (2002)Google Scholar
  6. 6.
    Düntsch, I., Orłowska, E.: Mixing modal and sufficiency operators. Bulletin of the Section of Logic, Polish Academy of Sciences 28, 99–106 (1999)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Hoare C. A. R., Jifeng H.: The weakest prespecification. Parts 1 and 2. Fundamenta Informaticae 9, 51–84, 217–262 (1986).Google Scholar
  8. 8.
    Huang, A., Zhu, W.: Topological characterizations for three covering approximation operators. In: Ciucci, D., Inuiguchi, M., Yao, Y., Ślęzak, D., Wang, G. (eds.) RSFDGrC 2013. LNCS, vol. 8170, pp. 277–284. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Khan, M. A., Banerjee, M.: A study of multiple-source approximation systems. In: Peters, J.F., Skowron, A., Słowiński, R., Lingras, P., Miao, D., Tsumoto, S. (eds.) Transactions on Rough Sets XII. LNCS, vol. 6190, pp. 46–75. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Medina, J., Ojeda-Aciego, M., Ruiz-Calviño, J.: Formal concept analysis via multiadjoint concept lattices. Fuzzy Sets and Systems 160(2), 130–144 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Pagliani, P.: A practical introduction to the modal relational approach to Approximation Spaces. In: Skowron, A. (ed.) Rough Sets in Knowledge Discovery, pp. 209–232. Physica-Verlag (1998)Google Scholar
  12. 12.
    Pagliani, P.: Modalizing Relations by means of Relations: A general framework for two basic approaches to Knowledge Discovery in Database. In: Gevers, M. (ed.) Proc. of the 7th Int. Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 1998, Paris, France, July 6-10, pp. 1175–1182. Editions E.D.K (1998)Google Scholar
  13. 13.
    Pagliani, P.: Concrete neighbourhood systems and formal pretopological spaces. In: Calcutta Logical Circle Conference on Logic and Artificial Intelligence, Calcutta, India, October 13-16 (2003); Now Chap. 15.14 of [17] Google Scholar
  14. 14.
    Pagliani, P.: Pretopology and Dynamic Spaces. Proc. of RSFSGRC 2003, Chongqing, R. P. China, 2003. Extended version in Fundamenta Informaticae 59(2-3), 221–239 (2004)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Pagliani, P.: Covering-based rough sets and formal topology. A uniform approach (Draft - available at Academia.edu) (2014)Google Scholar
  16. 16.
    Pagliani, P., Chakraborty, M.K.: Information Quanta and Approximation Spaces. I: Non-classical approximation operators. In: Proc. of the IEEE International Conference on Granular Computing, Beijing, R. P. China, July 25-27, vol. 2, pp. 605–610. IEEE, Los Alamitos (2005)Google Scholar
  17. 17.
    Pagliani, P., Chakraborty, M.K.: A geometry of Approximation. Trends in Logic, vol. 27. Springer (2008)Google Scholar
  18. 18.
    Qin, K., Gao, Y., Pei, Z.: On Covering Rough Sets. In: Yao, J., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., Ślęzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 34–41. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Restrepo, M., Cornelis, C., Gomez, J.: Duality, conjugacy and adjointness of approximation operators in covering-based rough sets. International Journal of Approximate Reasoning 55, 469–485 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Sambin, G., Gebellato, S.: A Preview of the Basic Picture: A New Perspective on Formal Topology. In: Altenkirch, T., Naraschewski, W., Reus, B. (eds.) TYPES 1998. LNCS, vol. 1657, pp. 194–207. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  21. 21.
    Skowron, A., Stepaniuk, J.: Approximation of Relations. In: Proc. of the Int. Workshop on Rough Sets and Knowledge Discovery, Banff, pp. 161–166. Springer (October 1993)Google Scholar
  22. 22.
    Yao, Y.Y., Chen, Y.H.: Rough set approximations in formal concept analysis. In: Proc. of 2004 Annual Meeting of the North American Fuzzy Inf. Proc. Society (NAFIPS 2004), IEEE Catalog Number: 04TH8736, pp. 73–78 (2004)Google Scholar
  23. 23.
    Yao, Y.Y., Yao, B.: Covering based rough sets approximations. Information Sciences 200, 91–107 (2012)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Zakowski, W.: Approximations in the space (U,Π). Demonstratio Mathematica 16, 761–769 (1983)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Piero Pagliani
    • 1
  1. 1.Research Group on Knowledge and Communication ModelsItaly

Personalised recommendations