Advertisement

Considerations on Rule Induction Procedures by STRIM and Their Relationship to VPRS

  • Yuichi Kato
  • Tetsuro Saeki
  • Shoutarou Mizuno
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8537)

Abstract

STRIM (Statistical Test Rule Induction Method) has been proposed as a method to effectively induct if-then rules from the decision table. The method was studied independently of the conventional rough sets methods. This paper summarizes the basic notion of STRIM and the conventional rule induction methods, considers the relationship between STRIM and their conventional methods, especially VPRS (Variable Precision Rough Set), and shows that STRIM develops the notion of VPRS into a statistical principle. In a simulation experiment, we also consider the condition that STRIM inducts the true rules specified in advance. This condition has not yet been studied, even in VPRS. Examination of the condition is very important if STRIM is properly applied to a set of real-world data set.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pawlak, Z.: Rough sets. Internat. J. Inform. Comput. Sci. 11(5), 341–356 (1982)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Skowron, A., Rauszer, C.M.: The Discernibility Matrix and Functions in Information Systems. In: Slowinski, R. (ed.) Intelligent Decision Support, Handbook of Application and Advances of Rough Set Theory, pp. 331–362. Kluwer Academic Publishers (1992)Google Scholar
  3. 3.
    Bao, Y.G., Du, X.Y., Deng, M.G., Ishii, N.: An Efficient Method for Computing All Reducts. Transaction of the Japanese Society for Artificial Intelligence 19(3), 166–173 (2004)CrossRefGoogle Scholar
  4. 4.
    Grzymala-Busse, J.W.: LERS- A system for learning from examples based on rough sets. In: Słowński, R. (ed.) Intelligent Decision Support. Handbook of Applications and Advances of the Rough Sets Theory, pp. 3–18. Kluwer Academic Publishers (1992)Google Scholar
  5. 5.
    Ziarko, W.: Variable precision rough set model. Journal of Computer and System Science 46, 39–59 (1993)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Shan, N., Ziarko, W.: Data-based acquisition and incremental modification of classification rules. Computational Intelligence 11(2), 357–370 (1995)CrossRefGoogle Scholar
  7. 7.
    Nishimura, T., Kato, Y., Saeki, T.: Studies on an Effective Algorithm to Reduce the Decision Matrix. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds.) RSFDGrC 2011. LNCS (LNAI), vol. 6743, pp. 240–243. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Matsubayashi, T., Kato, Y., Saeki, T.: A new rule induction method from a decision table using a statistical test. In: Li, T., Nguyen, H.S., Wang, G., Grzymala-Busse, J., Janicki, R., Hassanien, A.E., Yu, H. (eds.) RSKT 2012. LNCS (LNAI), vol. 7414, pp. 81–90. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Kato, Y., Saeki, T., Mizuno, S.: Studies on the Necessary Data Size for Rule Induction by STRIM. In: Lingras, P., Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P. (eds.) RSKT 2013. LNCS (LNAI), vol. 8171, pp. 213–220. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Jaworski, W.: Rule Induction: Combining Rough Set and Statistical Approaches. In: Chan, C.-C., Grzymala-Busse, J.W., Ziarko, W.P. (eds.) RSCTC 2008. LNCS (LNAI), vol. 5306, pp. 170–180. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Walpole, R.E., Myers, R.H., Myers, S.L., Ye, K.: Probability & Statistics for Engineers & Scientists, 8th edn., pp. 187–194. Pearson Prentice Hall (2007)Google Scholar
  12. 12.
    Xiw, G., Zhang, J., Lai, K.K., Yu, L.: Variable precision rough set group decision-making, An application. International Journal of Approximate Reasoning 49, 331–343 (2008)CrossRefGoogle Scholar
  13. 13.
    Inuiguchi, M., Yoshioka, Y., Kusunoki, Y.: Variable-precision dominance-based rough set approach and attribute reduction. International Journal of Approximate Reasoning 50, 1199–1214 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Huang, K.Y., Chang, T.-H., Chang, T.-C.: Determination of the threshold β of variable precision rough set by fuzzy algorithms. International Journal of Approximate Reasoning 52, 1056–1072 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Greco, S., Matarazzo, B., Słowiński, R., Stefanowski, J.: Variable Consistency Model of Dominance-Based Rough Sets Approach. In: Ziarko, W., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 170–181. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Janssen, F., Fürnkranz, J.: On the quest for optimal rule learning heuristics. Machine Learning 78, 343–379 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Yuichi Kato
    • 1
  • Tetsuro Saeki
    • 2
  • Shoutarou Mizuno
    • 1
  1. 1.Shimane UniversityMatsue CityJapan
  2. 2.Yamaguchi UniversityUbe CityJapan

Personalised recommendations