Decision Rule Classifiers for Multi-label Decision Tables

  • Fawaz Alsolami
  • Mohammad Azad
  • Igor Chikalov
  • Mikhail Moshkov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8537)


Recently, multi-label classification problem has received significant attention in the research community. This paper is devoted to study the effect of the considered rule heuristic parameters on the generalization error. The results of experiments for decision tables from UCI Machine Learning Repository and KEEL Repository show that rule heuristics taking into account both coverage and uncertainty perform better than the strategies taking into account a single criterion.


decision rules rule heuristics classification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asuncion, A., Newman, D.J.: UCI Machine Learning Repository (2007),
  2. 2.
    Azad, M., Chikalov, I., Moshkov, M.: Optimization of decision rule complexity for decision tables with many-valued decisions. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 444–448 (October 2013)Google Scholar
  3. 3.
    Blockeel, H., De Raedt, L., Ramon, J.: Top-down induction of clustering trees. In: Proceedings of the Fifteenth International Conference on Machine Learning, pp. 55–63. Morgan Kaufmann Publishers Inc. (1998)Google Scholar
  4. 4.
    Blockeel, H., Schietgat, L., Struyf, J., Džeroski, S., Clare, A.: Decision trees for hierarchical multilabel classification: A case study in functional genomics. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 18–29. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pattern Recognition 37(9), 1757–1771 (2004)CrossRefGoogle Scholar
  6. 6.
    Clare, A., King, R.D.: Knowledge discovery in multi-label phenotype data. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 42–53. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Greco, S., Matarazzo, B., Słowiński, R.: Rough sets theory for multicriteria decision analysis. European Journal of Operational Research 129(1), 1–47 (2001)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Moshkov, M., Zielosko, B.: Combinatorial Machine Learning–A Rough Set Approach. SCI, vol. 360. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers, Bosten (1991)CrossRefGoogle Scholar
  11. 11.
    Tsoumakas, G., Katakis, I.: Multi-label classification: An overview. International Journal of Data Warehouse and Mining 3(3), 1–13 (2007)CrossRefGoogle Scholar
  12. 12.
    Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Data Mining and Knowledge Discovery Handbook, pp. 667–685. Springer US (2010)Google Scholar
  13. 13.
    Wieczorkowska, A., Synak, P., Lewis, R., Raś, Z.W.: Extracting emotions from music data. In: Hacid, M.-S., Murray, N.V., Raś, Z.W., Tsumoto, S. (eds.) ISMIS 2005. LNCS (LNAI), vol. 3488, pp. 456–465. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Zhou, Z.H., Jiang, K., Li, M.: Multi-instance learning based web mining. Applied Intelligence 22(2), 135–147 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Fawaz Alsolami
    • 1
    • 2
  • Mohammad Azad
    • 1
  • Igor Chikalov
    • 1
  • Mikhail Moshkov
    • 1
  1. 1.Computer, Electrical and Mathematical Sciences and Engineering DivisionKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
  2. 2.Computer Science DepartmentKing Abdulaziz UniversitySaudi Arabia

Personalised recommendations