Covering Based Rough Sets and Relation Based Rough Sets

  • Mauricio Restrepo
  • Jonatan Gómez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8537)


Relation based rough sets and covering based rough sets are two important extensions of the classical rough sets. This paper investigates relationships between relation based rough sets and the covering based rough sets in a particular framework of approximation operators, presents a new group of approximation operators obtained by combining coverings and neighborhood operators and establishes some relationships between covering based rough sets and relation based rough sets.


rough sets covering based rough sets relation based rough sets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonikowski, Z., Brynarski, E.: Extensions and Intensions in rough set theory. Information Science 107, 149–167 (1998)CrossRefGoogle Scholar
  2. 2.
    Couso, I., Dubois, D.: Rough sets, coverings and incomplete information. Fundamenta Informaticae 108, 223–247 (2011)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Dai, J.: Rough sets approach to incomplete numerical data. Information Sciences 214, 43–57 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Grzymala-Busse, J., Siddhaye, S.: Rough Sets approach to rule induction from incomplete data. In: Proceedings of 10th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, pp. 923–930 (2004)Google Scholar
  5. 5.
    Grzymała-Busse, J.W.: Data with Missing Attribute Values: Generalization of Indiscernibility Relation and Rule Induction. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B., Swiniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 78–95. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Järvinen, J.: Lattice Theory for Rough Sets. In: Peters, J.F., Skowron, A., Düntsch, I., Grzymała-Busse, J., Orłowska, E., Polkowski, L. (eds.) Transactions on Rough Sets VI. LNCS, vol. 4374, pp. 400–498. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Järvinen, J., Radeleczki, S.: Rough Sets determined by tolerance. International Journal of Approximate Reasoning (2013),
  8. 8.
    Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Restrepo, M., Cornelis, C., Gómez, J.: Duality, Conjugacy and Adjointness of Approximation Operators in Covering-based Rough Sets. International Journal of Approximate Reasoning 55, 469–485 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Samanta, P., Chakraborty, M.K.: Covering based approaches to rough sets and implication lattices. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds.) RSFDGrC 2009. LNCS (LNAI), vol. 5908, pp. 127–134. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Skowron, A., Stepaniuk, J.: Tolerance Approximation Spaces. Fundamenta Informaticae 55, 245–253 (1996)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Slowinski, R., Venderpooten, D.: A generalized definition of rough approximation based on similarity. IEEE Transaction on Knowledge and Data Engineering 12, 331–336 (2000)CrossRefGoogle Scholar
  13. 13.
    Wu, M., Wu, X., Shen, T.: A New Type of Covering Approximation Operators. In: International Conference on Electronic Computer Technology, pp. 334–338. IEEE (2009)Google Scholar
  14. 14.
    Xu, W., Zhang, W.: Measuring roughness of generalized rough sets induced by a covering. Fuzzy Sets and Systems 158, 2443–2455 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Yang, T., Li, Q.: Reduction about Approximation Spaces of Covering Generalized Rough Sets. International Journal of Approximate Reasoning 51, 335–345 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Yao, Y.Y.: Constructive and Algebraic Methods of the Theory of Rough Sets. Information Sciences 109, 21–47 (1998)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Yao, Y.Y.: Generalized Rough Sets Models. In: Polkowski, L., Skowron, A. (eds.) Knowledge Discovery, pp. 286–318. Physica-Verlag (1998)Google Scholar
  18. 18.
    Yao, Y.Y.: On generalizing Rough Sets Theory. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 44–51. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Yao, Y.Y., Yao, B.: Two views of the theory of rough sets in finite universes. International Journal of Approximate Reasoning 15, 299–317 (1996)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Yao, Y.Y., Yao, B.: Covering Based Rough Sets Approximations. Information Sciences 200, 91–107 (2012)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Zakowski, W.: Approximations in the Space (u,π). Demonstratio Mathematica 16, 761–769 (1983)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Zhang, Y.L., Li, J., Wu, W.: On Axiomatic Characterizations of Three Pairs of Covering Based Approximation Operators. Information Sciences 180, 274–287 (2010)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Zhang, Y.L., Luo, M.K.: Relationships between covering-based rough sets and relation-based rough sets. Information Sciences 225, 55–71 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Zhu, W.: Basics concepts in Covering-Based Rough Sets. In: Third International Conference on Natural Computation, vol. 5, pp. 283–286 (2007)Google Scholar
  25. 25.
    Zhu, W.: Properties of the First Type of Covering-Based Rough Sets. In: Proceedings of Sixth IEEE International Conference on Data Mining - Workshops, pp. 407–411 (2006)Google Scholar
  26. 26.
    Zhu, W.: Properties of the Second Type of Covering-Based Rough Sets. In: Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, pp. 494–497 (2006)Google Scholar
  27. 27.
    Zhu, W.: Properties of the Third Type of Covering-Based Rough Sets. In: Proceedings of International Conference on Machine Learning and Cybernetics, pp. 3746–3751 (2007)Google Scholar
  28. 28.
    Zhu, W.: Properties of the Fourth Type of Covering-Based Rough Sets. In: Proceedings of Sixth International Conference on Hybrid Intelligence Systems, p. 43 (2006)Google Scholar
  29. 29.
    Zhu, W., Wang, F.: On Three Types of Covering Based Rough Sets. IEEE Transactions on Knowledge and Data Engineering 19, 1131–1144 (2007)CrossRefGoogle Scholar
  30. 30.
    Zhu, W.: Relationship Between Generalized Rough Sets Based on Binary Relation and Covering. Information Sciences 179, 210–225 (2009)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Zhu, W., Wang, F.: A New Type of Covering Rough Set. In: Proceedings of Third International IEEE Conference on Intelligence Systems, pp. 444–449 (2006)Google Scholar
  32. 32.
    Zhu, W., Wang, F.: Reduction and Axiomatization of Covering Generalized Rough Sets. Information Sciences 152, 217–230 (2003)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Zhu, W., Wang, F.-Y.: Binary relation based Rough Sets. In: Wang, L., Jiao, L., Shi, G., Li, X., Liu, J. (eds.) FSKD 2006. LNCS (LNAI), vol. 4223, pp. 276–285. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mauricio Restrepo
    • 1
  • Jonatan Gómez
    • 1
  1. 1.Universidad Nacional de ColombiaBogotáColombia

Personalised recommendations