Advertisement

Interactive Computations on Complex Granules

  • Andrzej Jankowski
  • Andrzej Skowron
  • Roman Swiniarski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8537)

Abstract

Information granules (infogranules, for short) are widely discussed in the literature. In particular, let us mention here the rough granular computing approach based on the rough set approach and its combination with other approaches to soft computing. However, the issues related to interactions of infogranules with the physical world and to perception of interactions in the physical world represented by infogranules are not well elaborated yet. On the other hand, the understanding of interactions is the critical issue of complex systems. We propose to model complex systems by interactive computational systems (ICS) created by societies of agents. Computations in ICS are based on complex granules (c-granules, for short). In the paper we concentrate on some basic issues related to interactive computations based on c-granules performed by agents in the physical world.

Keywords

granular computing rough set interaction information granule physical object hunk complex granule interactive computational system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barwise, J., Seligman, J.: Information Flow: The Logic of Distributed Systems. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  2. 2.
    Bazan, J.: Hierarchical classifiers for complex spatio-temporal concepts. In: Peters, J.F., Skowron, A., Rybiński, H. (eds.) Transactions on Rough Sets IX. LNCS, vol. 5390, pp. 474–750. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Deutsch, D., Ekert, A., Lupacchini, R.: Machines, logic and quantum physics. Neural Computation 6, 265–283 (2000)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Goldin, D., Smolka, S., Wegner, P. (eds.): Interactive Computation: The New Paradigm. Springer (2006)Google Scholar
  5. 5.
    Gurevich, Y.: Interactive algorithms 2005. In: Goldin, et al. (eds.) [4], pp. 165–181Google Scholar
  6. 6.
    Heller, M.: The Ontology of Physical Objects. Four Dimensional Hunks of Matter. Cambridge Studies in Philosophy. Cambridge University Press, Cambridge (1990)Google Scholar
  7. 7.
    Jankowski, A.: Practical Issues of Complex Systems Engineering: Wisdom Technology Approach. Springer, Heidelberg (in preparation, 2014)Google Scholar
  8. 8.
    Jankowski, A., Skowron, A.: A wistech paradigm for intelligent systems. In: Peters, J.F., Skowron, A., Düntsch, I., Grzymała-Busse, J., Orłowska, E., Polkowski, L. (eds.) Transactions on Rough Sets VI. LNCS, vol. 4374, pp. 94–132. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Jankowski, A., Skowron, A.: Wisdom technology: A rough-granular approach. In: Marciniak, M., Mykowiecka, A. (eds.) Bolc Festschrift. LNCS, vol. 5070, pp. 3–41. Springer, Heidelberg (2009)Google Scholar
  10. 10.
    Jankowski, A., Skowron, A., Swiniarski, R.: Interactive complex granules. In: Szczuka, M., Czaja, L., Kacprzak, M. (eds.) Proceedings of the 22nd International Workshop on Concurrency, Specification and Programming (CS&P 2013), Warsaw, Poland, September 25-27. CEUR Workshop Proceedings, vol. 1032, pp. 206–218. RWTH Aachen University (2013)Google Scholar
  11. 11.
    Jankowski, A., Skowron, A., Swiniarski, R.: Interactive computations: Toward risk management in interactive intelligent systems. In: Maji, P., Ghosh, A., Murty, M.N., Ghosh, K., Pal, S.K. (eds.) PReMI 2013. LNCS, vol. 8251, pp. 1–12. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Kari, L., Rozenberg, G.: The many facets of natural computing. Communications of the ACM 51, 72–83 (2008)CrossRefGoogle Scholar
  13. 13.
    Marsh, L.: Stigmergic epistemology, stigmergic cognition. Journal Cognitive Systems 9, 136–149 (2008)CrossRefGoogle Scholar
  14. 14.
    Martin-Löf, P.: Intuitionistic Type Theory (Notes by Giovanni Sambin of a series of lectures given in Padua, June 1980), Bibliopolis, Napoli, Italy (1984)Google Scholar
  15. 15.
    Nguyen, S.H., Bazan, J., Skowron, A., Nguyen, H.S.: Layered learning for concept synthesis. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B., Swiniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 187–208. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Omicini, A., Ricci, A., Viroli, M.: The multidisciplinary patterns of interaction from sciences to computer science. In: Goldin, et al. (eds.) [4], pp. 395–414Google Scholar
  17. 17.
    Pedrycz, W., Skowron, S., Kreinovich, V. (eds.): Handbook of Granular Computing. John Wiley & Sons, Hoboken (2008)Google Scholar
  18. 18.
    Skowron, A., Stepaniuk, J., Swiniarski, R.: Modeling rough granular computing based on approximation spaces. Information Sciences 184, 20–43 (2012)CrossRefGoogle Scholar
  19. 19.
    Skowron, A., Szczuka, M.: Toward interactive computations: A rough-granular approach. In: Koronacki, J., Raś, Z.W., Wierzchoń, S.T., Kacprzyk, J. (eds.) Advances in Machine Learning II. SCI, vol. 263, pp. 23–42. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Skowron, A., Wasilewski, P.: Information systems in modeling interactive computations on granules. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS (LNAI), vol. 6086, pp. 730–739. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Skowron, A., Wasilewski, P.: Information systems in modeling interactive computations on granules. Theoretical Computer Science 412(42), 5939–5959 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Skowron, A., Wasilewski, P.: Toward interactive rough-granular computing. Control & Cybernetics 40(2), 1–23 (2011)zbMATHGoogle Scholar
  23. 23.
    Skowron, A., Wasilewski, P.: Interactive information systems: Toward perception based computing. Theoretical Computer Science 454, 240–260 (2012)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Toffoli, T.: Physics and computation. lnternational Journal of Theoretical Physics 21, 165–175 (1982)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. on Systems, Man and Cybernetics SMC-3, 28–44 (1973)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Zadeh, L.A.: Fuzzy sets and information granularity. In: Advances in Fuzzy Set Theory and Applications, pp. 3–18. North-Holland, Amsterdam (1979)Google Scholar
  27. 27.
    Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems 90, 111–127 (1997)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zadeh, L.A.: From computing with numbers to computing with words – from manipulation of measurements to manipulation of perceptions. IEEE Transactions on Circuits and Systems 45, 105–119 (1999)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Zadeh, L.A.: A new direction in AI: Toward a computational theory of perceptions. AI Magazine 22(1), 73–84 (2001)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Andrzej Jankowski
    • 1
  • Andrzej Skowron
    • 2
  • Roman Swiniarski
    • 3
    • 4
  1. 1.Institute of Computer ScienceWarsaw University of TechnologyWarsawPoland
  2. 2.Institute of MathematicsWarsaw UniversityWarsawPoland
  3. 3.Department of Computer ScienceSan Diego State UniversitySan DiegoUSA
  4. 4.Institute of Computer Science Polish Academy of SciencesWarsawPoland

Personalised recommendations