A Hierarchical Coding-Window Model of Parkinson’s Disease

  • Andres Daniela Sabrina
  • Gomez Florian
  • Cerquetti Daniel
  • Merello Marcelo
  • Stoop Ruedi
Part of the Communications in Computer and Information Science book series (CCIS, volume 438)

Abstract

Parkinson’s disease is an ongoing challenge to theoretical neuroscience and to medical treatment. During the evolution of the disease, neurodegeneration leads to physiological and anatomical changes that affect the neuronal discharge of the Basal Ganglia to an extent that impairs normal behavioral patterns. To investigate this problem, single Globus Pallidus pars interna (GPi) neurons of the 6-OHDA rat model of Parkinson’s disease were extracellularly recorded at different degrees of alertness and compared to non-Parkinson control neurons. A structure function analysis of these data revealed that the temporal range of rate-coded information in GPi was substantially reduced in the Parkinson animal-model, suggesting that a dominance of small neighborhood dynamics could be the hallmark of Parkinson’s disease. A mathematical-model of the GPi circuit, where the small neighborhood coupling is expressed in terms of a diffusion constant, corroborates this interpretation.

Keywords

Parkinson’s disease neuronal code structure function diffusive coupling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stein, R.B., Roderich Gossen, E.R., Jones, K.E.: Neuronal variability: Noise or part of the signal? Nat. Rev. Neurosci. 6, 389–397 (2005)CrossRefGoogle Scholar
  2. 2.
    Shadlen, M.N., Newsome, W.T.: Noise, neural codes and cortical organization. Curr. Opin. Neurobiol. 4(4), 569–579 (1994)CrossRefGoogle Scholar
  3. 3.
    Obeso, J.A., Rodríguez-Oroz, M.C., Rodríguez, M., Lanciego, J.L., Artieda, J., Gonzalo, N., et al.: Pathophysiology of the basal ganglia in Parkinson’s disease. Trends Neurosci. 23(suppl.), S8–S19 (2000)Google Scholar
  4. 4.
    Hu, K., Ivanov, P.C., Chen, Z., Carpena, P., Stanley, E.: Effect of trends on detrended fluctuation analysis. Phys Rev. E 64(1), 011114 (2001)Google Scholar
  5. 5.
    Ivanov, P.C., Nunes Amaral, L.A., Goldberger, A.L., Havlin, S., Rosenblum, M.G., Struzik, Z.R., Stanley, E.: Multifractality in human heartbeat dynamics. Nature 399(6735), 461–465 (1999)CrossRefGoogle Scholar
  6. 6.
    Romano, G.P., Antonia, R.A., Zhou, T.: Evaluation of LDA temporal and spatial velocity structure functions in a low Reynolds number turbulent channel flow. Exp. Fluids 27, 368–377 (1999)CrossRefGoogle Scholar
  7. 7.
    Frisch, U.: Turbulence: The legacy of A.N. Kolmogorov. University Press, Cambridge (1996)Google Scholar
  8. 8.
    Benzi, R., Ciliberto, S., Tripiccione, R., Baudet, C., Massaioli, F., Succi, S.: Extended self-similarity in turbulent flows. Phys. Rev. E 48(1), R29–R32 (1993)Google Scholar
  9. 9.
    Schuls-DuBois, E.O., Rehberg, I.: Structure function in Lieu of correlation function. Appl. Phys. 24, 323–329 (1981)CrossRefGoogle Scholar
  10. 10.
    Lin, D.C., Hughson, R.L.: Modeling heart rate variability in healthy humans: A turbulence analogy. Phys. Rev. Lett. 86, 1650–1653 (2000)CrossRefGoogle Scholar
  11. 11.
    Vainshtein, S.I., Sreenivasan, K.R., Pierrehumbert, R.T., Kashyap, V., Juneja, A.: Scaling exponents for turbulence and other random processes and their relationships with multifractal structure. Phys. Rev. E 50(3), 1823–1835 (1994)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Andres, D.S., Gomez, F., Cerquetti, D., Merello, M., Stoop, R.: A hierarchical coding-window model of Parkinson’s disease (2014), http://arxiv.org/abs/1307.6028
  13. 13.
    Quian Quiroga, R., Nadasdy, Z., Ben-Shaul, Y.: Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput. 16, 1661–1687 (2004)CrossRefMATHGoogle Scholar
  14. 14.
    Rulkov, N.F.: Modeling of spiking-bursting neural behavior using two-dimensional map. Phys. Rev. E 65, 041922 (2002)Google Scholar
  15. 15.
    Difiglia, M., Rafols, J.A.: Synaptic organization of the Globus Pallidus. J. Electron Microsc. Tech. 10, 247–263 (1988)CrossRefGoogle Scholar
  16. 16.
    Gatev, P., Darbin, O., Wichmann, T.: Oscillations in the basal ganglia under normal conditions and in movement disorders. Movement Disord 21(10), 1566–1577 (2010)CrossRefGoogle Scholar
  17. 17.
    Dostrovsky, J., Bergman, H.: Oscillatory activity in the basal ganglia – relationship to normal physiology and pathophysiology. Brain 127, 721–722 (2004)CrossRefGoogle Scholar
  18. 18.
    Weinberger, M., Mahant, N., Hutchison, W.D., Lozano, A.M., Moro, E., Hodaie, M., Lang, A.E., Dostrovsky, J.O.: Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson’s disease. J. Neurophysiol. 96, 3248–3256 (2006)CrossRefGoogle Scholar
  19. 19.
    Levy, R., Dostrovsky, J.O., Lang, A.E., Sime, E., Hutchison, W.D., Lozano, A.M.: Effects of Apomorphine on subthalamic nucleus and Globus Pallidus Internus neurons in patients with Parkinson’s disease. J. Neurophysiol. 86, 249–260 (2001)Google Scholar
  20. 20.
    Kühn, A.A., Kempf, F., Brücke, C., Doyle, L.G., Martinez-Torres, I., et al.: High-frequency stimulation of the subthalamic nucleus suppresses oscillatory b activity in patients with Parkinson’s disease in parallel with improvement in motor performance. J. Neurosci. 28(24), 6165–6173 (2008)CrossRefGoogle Scholar
  21. 21.
    Cepeda, C., Walsh, J.P., Hull, C.D., Howard, S.G., Buchwald, N.A., Levine, M.S.: Dye-coupling in the Neostriatum of the rat: I. Modulation by dopamine-depleting lesions. Synapse 4, 229–237 (1989)CrossRefGoogle Scholar
  22. 22.
    Onn, S.P., Grace, A.A.: Dye-coupling between rat striatal neurons recorded in vivo: Compartmental organization and modulation by dopamine. J. Neurophysiol. 71(5), 1917–1934 (1994)Google Scholar
  23. 23.
    Andres, D.S., Cerquetti, D.F., Merello, M.: Turbulence in Globus pallidum neurons in patients with Parkinson’s disease: Exponential decay of the power spectrum. J. Neurosci. Meth. 197(1), 14–20 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Andres Daniela Sabrina
    • 1
    • 2
    • 3
  • Gomez Florian
    • 1
  • Cerquetti Daniel
    • 2
  • Merello Marcelo
    • 2
  • Stoop Ruedi
    • 1
  1. 1.Institute of NeuroinformaticsETH and UZH ZurichZurichSwitzerland
  2. 2.Institute for Neurological Research Raul Carrea, Fleni InstituteMovement Disorders SectionBuenos AiresArgentine
  3. 3.Society in Science, The Branco-Weiss FellowshipETHZurichSwitzerland

Personalised recommendations