Deviation from Criticality in Functional Biological Networks

  • Tom Lorimer
  • Florian Gomez
  • Ruedi Stoop
Part of the Communications in Computer and Information Science book series (CCIS, volume 438)


Claims based on power laws that cognition occurs in a critical state often rely on the assumption that the network observables studied are observables of cognition, however this relationship to function is not clear. Our novel approach to investigate this problem is instead to consider functional output during (goal-directed) pre-copulatory courtship of Drosophila melanogaster, which we study as a complex network. This courtship body language, expressed through a symbolic dynamics, has previously been shown to be situation specific and grammatically complex; here, we show that the networks underlying it deviate from a scale-free structure when recursive grammars are included. This structural deviation is modelled by a simple network growth algorithm which adds internal edge saturation to the preferential attachment paradigm. From this, we suggest that a critical state may not be compatible with higher level cognition.


Criticality cognition complex networks network growth 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chialvo, D.R.: Emergent Complex Neural Dynamics. Nature Phys. 6, 744–750 (2010)CrossRefGoogle Scholar
  2. 2.
    Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-Law Distributions in Empirical Data. SIAM Rev. 51, 661–703 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Deluca, A., Corral, A.: Fitting and Goodness-of-Fit Test of Non-Truncated and Truncated Power-Law Distributions. Acta Geophys. 61, 1351–1394 (2013)CrossRefGoogle Scholar
  4. 4.
    Shew, W.L., Yang, H., Yu, S., Roy, R., Plenz, D.: Information Capacity and Transmission Are Maximized in Balanced Cortical Networks with Neuronal Avalanches. J. Neurosci. 31, 55–63 (2011)CrossRefGoogle Scholar
  5. 5.
    Friedman, N., Ito, S., Brinkman, B.A.W., Shimono, M., DeVille, R.E.L., Dahmen, K.A., Beggs, J.M., Butler, T.C.: Universal Critical Dynamics in High Resolution Neuronal Avalanche Data. Phys. Rev. Lett. 108, 208102 (2012)CrossRefGoogle Scholar
  6. 6.
    Bertschinger, N., Natschläger, T.: Real-Time Computation at the Edge of Chaos in Recurrent Neural Networks. Neural Comput 16, 1413–1436 (2004)CrossRefzbMATHGoogle Scholar
  7. 7.
    Rämö, P., Kauffman, S., Kesselia, J., Yli-harjaa, O.: Measurements for Information Propagation in Boolean Networks. Physica D 227, 100–104 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Kern, A., Stoop, R.: Essential Role of Couplings Between Hearing Nonlinearities. Phys. Rev. Lett. 91, 128101 (2003)CrossRefGoogle Scholar
  9. 9.
    Gomez, F., Stoop, R.: (in preparation)Google Scholar
  10. 10.
    Beggs, J.M., Plenz, D.: Neuronal Avalanches in Neocortical Circuits. J. Neurosci. 23, 11167–11177 (2003)Google Scholar
  11. 11.
    Petermann, T., Thiagarajan, T.C., Lebedev, M.A., Nicolelis, M.A.L., Chialvo, D.R., Plenz, D.: Spontaneous Cortical Activity in Awake Monkeys Composed of Neuronal Avalanches. Proc. Natl. Acad. Sci. U.S.A. 106, 15921–15926 (2009)CrossRefGoogle Scholar
  12. 12.
    Eguíluz, V.M., Chialvo, D.R., Cecchi, G.A., Baliki, M., Apkarian, A.V.: Scale-Free Brain Functional Networks. Phys. Rev. Lett. 94, 018102 (2005)Google Scholar
  13. 13.
    Lo, C.-C., Nunes Amaral, L.A., Havlin, S., Ivanov, P.Ch., Penzel, T., Peter, J.-H., Stanley, H.E.: Dynamics of Sleep-Wake Transitions During Sleep. Europhys. Lett. 57, 625–631 (2002)Google Scholar
  14. 14.
    Lo, C.-C., Chou, T., Penzel, T., Scammell, T.E., Strecker, R.E., Stanley, H.E., Ivanov, P.Ch.: Common Scale-Invariant Patterns of Sleep-Wake Transitions Across Mammalian Species. Proc. Natl. Acad. Sci. U.S.A. 101, 17545–17548Google Scholar
  15. 15.
    Stoop, R., Arthur Jr., B.I.: Periodic Orbit Analysis Demonstrates Genetic Constraints, Variability, and Switching in Drosophila Courtship Behavior. Chaos 18, 023123 (2008)Google Scholar
  16. 16.
    Stoop, R., Joller, J.: Mesocopic Comparison of Complex Networks Based on Periodic Orbits. Chaos 21, 016112 (2011)Google Scholar
  17. 17.
    Stoop, R., Nüesch, P., Stoop, R.L., Bunimovich, L.A.: At Grammatical Faculty of Language, Flies Outsmart Men. PLoS ONE 8, e70284 (2013)Google Scholar
  18. 18.
    Ferrer i Cancho, R., Solé, R.V.: Two Regimes in the Frequency of Words and the Origins of Complex Lexicons: Zipf’s Law Revisited. J. Quant. Linguist. 8, 165–173 (2001)CrossRefGoogle Scholar
  19. 19.
    Dorogovtsev, S.N., Mendes, J.F.F.: Language as an Evolving Word Web. Proc. R. Soc. Lond. B 268, 2603–2606 (2001)CrossRefGoogle Scholar
  20. 20.
    Barabási, A.-L., Albert, R.: Emergence of Scaling in Random Networks. Science 286, 509–512 (1999)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tom Lorimer
    • 1
  • Florian Gomez
    • 1
  • Ruedi Stoop
    • 1
  1. 1.Institute of NeuroinformaticsUniversity of Zurich and ETH ZurichZurichSwitzerland

Personalised recommendations