Complex Networks of Harmonic Structure in Classical Music

  • Florian Gomez
  • Tom Lorimer
  • Ruedi Stoop
Part of the Communications in Computer and Information Science book series (CCIS, volume 438)

Abstract

Music is a ubiquitous, complex and defining phenomenon of human culture. We create and analyze complex networks representing harmonic transitions in eight selected compositions of Johann Sebastian Bach’s Well-Tempered Clavier. While all resulting networks exhibit the typical ‘small-world’-characteristics, they clearly differ in their degree distributions. Some of the degree distributions are well fit by a power-law, others by an exponential, and some by neither. This seems to preclude the necessity of a scale-free degree distribution for music to be appealing. To obtain a quality measure for the network representation, we design a simple algorithm that generates artificial polyphonic music, which also exhibits the different styles of composition underlying the various pieces.

Keywords

Complex Networks Music Harmony Artificial Music 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  2. 2.
    Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: Structure and dynamics. Phys. Rep. 424, 175–308 (2006)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Liu, X.F., Tse, C.K., Small, M.: Complex network structure of musical compositions: Algorithmic generation of appealing music. Physica A 389, 126–132 (2010)CrossRefGoogle Scholar
  5. 5.
    Serrà, J., Corral, A., Boguñá, M., Haro, M., Arcos, J.L.: Measuring the Evolution of Contemporary Western Popular Music. Sci. Rep. 2, 00521 (2012)Google Scholar
  6. 6.
    Liu, L., Wei, J., Zhang, H., Xin, J., Huang, J.: A Statistical Physics View of Pitch Fluctuations in the Classical Music from Bach to Chopin: Evidence for Scaling. PLoS ONE 8, e58710 (2013)Google Scholar
  7. 7.
    Zivic, P.H.R., Shifres, F., Cecchi, G.A.: Perceptual basis of evolving Western musical styles. Proc. Natl. Acad. Sci. U.S.A. 110, 10034–10038 (2013)CrossRefGoogle Scholar
  8. 8.
    Nettheim, N.: On the Spectral Analysis of Melody. Interface 21, 135–148 (1992)CrossRefGoogle Scholar
  9. 9.
    Boon, J.P., Decroly, O.: Dynamical Systems theory for music dynamics. Chaos 5, 501–508 (1995)CrossRefGoogle Scholar
  10. 10.
    Voss, R.F., Clarke, C.: “1/f noise” in music: Music from 1/f noise. J. Acoust. Soc. Am. 63, 258–263 (1978)CrossRefGoogle Scholar
  11. 11.
    Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of 1/f noise. Phys. Rev. Lett. 59, 381–384 (1987)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Jennings, H.D., Ivanov, P.C., Martins, A.M., da Silva, P.C., Viswanathan, G.M.: Variance fluctuations in nonstationary time series: A comparative study of music genres. Physica A 336, 585–594 (2004)CrossRefGoogle Scholar
  13. 13.
    Boon, J.P., Noullez, A., Mommen, C.: Complex Dynamics and Musical Structure. Interface 19, 3–14 (1990)CrossRefGoogle Scholar
  14. 14.
    Zanette, D.H.: Zipf’s law and the creation of musical context. Music Sci. 10, 3–18 (2006)Google Scholar
  15. 15.
    Beltrán del Río, M., Cocho, G., Naumis, G.G.: Universality in the tail of musical note rank distribution. Physica A 387, 5552–5560 (2008)CrossRefGoogle Scholar
  16. 16.
    Lerdahl, F.: Tonal Pitch Space. Oxford University Press (2001)Google Scholar
  17. 17.
    Tymoczko, D.: The Geometry of Musical Chords. Science 313, 72–74 (2006)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-Law Distributions in Empirical Data. SIAM Rev. 51, 661–703 (2009)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Deluca, A., Corral, Á.: Fitting and goodness-of-fit test of non-truncated and truncated power-law distributions. Acta Geophys. 61, 1351–1394 (2013)CrossRefGoogle Scholar
  20. 20.
    Artificially generated music is available on http://stoop.ini.uzh.ch/artmus

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Florian Gomez
    • 1
  • Tom Lorimer
    • 1
  • Ruedi Stoop
    • 1
  1. 1.Institute of NeuroinformaticsUniversity of Zurich and ETH ZurichZurichSwitzerland

Personalised recommendations